U.S. Department

ROCK SLOPES:
 Design, Excavation, Stabilization

Abstract

This documen+ Is disseminated under the sponsorshlp of the Department of Transportation In the Interest of Information exchange. The United States Government assumes no liablility for Its contents or use thereof.

The contents of this report reflect the vlews of Golder Assoclates, which ls responslble for the facts and the accuracy of the data presented hereln. The contents do not necesser liy ref lect the off lclalviews or pol lcy of the Department of Transportation.

Thls report does not constitute a standard, specification or regulation.

ACKNOWLEDGEMENTS

Golder Associates wishes to express their appreciation to the Federal Highway Administration for their funding Of the preparation of this manual. We also appreclate the assistance and advice provided by many members of the Federal and State Government geotechnlcal engineering community with whom we have worked in the past. I n particular, we acknowledge Gerry DiMaggio, Dick Cheney, Bob Leary, and Ron Chassie with the Federal Highway Administration, and Verne McGutfey (NYDOT), Hal Apgar (NJDOT), Dave Bingham (NCDOT), Bob Smith, BII I CaPtul and Jim Winger (IDT), Al Kil lisn and Steve Lowell (WSDOT), and Harry Moore (TNDOT).

We al so appreciate the generosity of Dr. Evert Hoek and John Bray for al lowing the adaption of their book "Rock Slope Engineering" (published by Institute of Mining and Metallurgy, London 1981) as the basis for this manual. Examples and experience quoted in this manual have been drawn from many organizations including railway, highway, logging and mining companies located in many parts of the world. In addition, we are grateful to the manufacturers of drilling equipment, explosives and movement monitoring instruments for the use of their technical data.

PROTECTED UNDER INTERNATIONAL COPYRIGHT
ALL RIGHTS RESERVED.
NATIONAL TECHNICAL INFORMATION SERVICE
U.S DEPARTMENT OF COMMERCE

PREFACE

This manual has been prepared by Golder Associates, Seattle, Washington, in conjunction with a series of Rock Slope Engineering courses sponsored by the Federal Highway Administration.

Abstract

The manual is based on a book entitled "Rock Slope Engineering" authored by Dr. Evert Hoek and Dr. John Bray. A third edition of this book has been published in 1981. The book has been modified for these courses by expanding the chapter on Blasting and preparing new chapters on Sloe Stabilizalton, Movement Monitoring and Construction Contracts and Specifications. A glossary of excavation terms, $l i$ st ings and documentation of two slope stability programs and a data collection manual have been added as appendices. The entire text has been edited to make it applicable to transportation engineering.

TABLE OF CONTENTS

PAGE

Chapter 1: Principles of rock slope engineering for highways 1.1
Economic consequences of instabi I ity 1.1
Planning stability investigations 1.6
Chapter 1 references 1.11
Chapter 2: Basic mechanics of slope failure 2.1
Continuum mechanics approach to slope stability 2.1
Maximum slope height - slope angle relationship for excavated slopes 2.1
Role of discontinuities in slope failure 2.2
Friction, cohesion and unit weight 2.2
Sliding due to gravitational loading 2.7
Influence of water pressure on shear strength 2.7
The effective stress law 2.8
The effect of water pressure in a tension crack 2.9
Reinforcement to prevent sliding 2.9
Factor of safoty of a slope 2.10
Slope failures for which factors of safety can be colculated 2.11
Critical slope height versus slope angle relationships 2.12
Slopes for which a factor of safety cannot be calculated 2.14
Probabilistic approach to slope design 2.16
Chapter 2 references 2.18
Chapter 3: Graphical presentation of geological data 3.1
Definition of geological terms 3.1
Definition of geometrical terms 3.3 3.3
Graphical techniques for data presentation 3.4
Equal-area projection 3.4
Construction of a great circle and a pole representing a plane 3.9
Determination of the line of intersection of two planes 3.9
To determine the angle between two specific lines 3.10
Altarnative method for finding the line of intersection of two planes 3.11
Plotting and analysis of field measurements 3.11
Evaluation of potential slope problems 3.19
Suggested method of date presentation and analysis for highway design 3.23
Chapter 3 referances3.26
Chaptw 4: Geological data collection 4.1
Regional geological investigations 4.1
Mapp Ing of exposed structures 4.2
Photograph ic mapping of exposed structures 4.6
Measurement of surface roughness 4.8
Diamond drilling for structural purposes 4.8
Presentation of geological information 4.16
Chapter 4 references 4.18

TABLE OF CONTENTS (Cont'd)

		PAGE
Chapter 5:	Shear strength of rock	5.1
	Shear strength of planar discontinuities	5.1
	Influence of water on shear strength of planar discontinuities	5.2
	Shearing on an inclined plane	5.3
	Surface roughness	5.4
	Shear testing of discontinuities in rock	5.7
	Estimating joint compressive strength and friction angle	5.14
	Shear strength of filled discontinuities	5.19
	Shear strength of closely jointed rock masses	5.22
	Testing closely jointed rock	5.25
	Shear strength determination by back analysis of slope failures	5.30
	Sample collection and preparation	5.33 5.39
Chapter 6:	Groundwater flow; permeability and pressure	6.1
	Groundwater flow in rock masses	6.2
	Flow nets	6.8
	Field measurement of permeability	6.10
	Measurement of water pressure	6.17
	General comments	6.20
	Chapter 6 references	6.22
Chapter 7:	Plane failure	7.1
	General conditions for plane failure	7.1
	Plane failure analysis	7.1
	Graphical analysis of stability	7.8
	Influence of aroundwater on stability	7.10
	Critical tension crack depth	7.12
	The tension crack as an indicator of instability	7.15
	Critical failure plane inclination	7.16
	Influence of undercutting the toe of a slope	7.17
	Reinforcement of a slope	7.17
	Analvsis of failure on a rough plane	7.18
	Practical example No. 1	7.19
	Practical example No. 2	7.25
	Practical example No. 3	7.30
	Practical example No. 4	7.41
	Practical example No. 5	7.47
	Chapter 7 references	7.49
Chapter 8:	Wedge failure	a. 1
	Definition of wedge geometry	a. 4
	Analysis of wedge failure	a. 4
	Wedge analysis including cohesion and water pressure	8.5
	Wedge stability charts for friction only Practical example of wedge analysis	a. 12
	Chapter B references	a. 25

PAGE
Chapter 9: Circular failure 9.1
Conditions for circular failure 9.1 9.3
Derivation of circular failure chart
Derivation of circular failure chart
Groundwater flow assumptions9.4
Production of circular flow charts 9.5
Use of the circular failure charts 9.5
Location of critical failure circle and tension crack 9.14
Practical example No. 1 9.17
Practical example No. 2 9.18
Practical example No. 3 9.19
Bishop's and Janbu's methods of slices 9.22
Chapter 9 references 9.29
Chapter 10: Toppling failure 10.1
Types of toppling failure 10.1
Analysis of toppling failure 10.3
Factor of safety for limiting equilibrium analysis of topoling failures 10.13
General comments on toppling-failure 10.13
Chapter $\mathbf{1 0}$ references 10.14
Chapter 11: Blasting11.1
1 Principles of blasting 11.1
Mechanism of rock failure by explosive 11.1 11.2
Production blasting
Production blasting
Blast design 11.11
Evaluation of a blast 11.13
Modification of blasting methods 11.13
II Controlled blasting to improve stability 11.15
Line drilling 11.16
Cushion blasting 11.20
Preshear blasting 11.24
Buffer blasting 11.30
Controlled blasting: construction practices and economics 11.30
III Blast damage and its control 11.32
Structural damage 11.34
Control of flyrock 11.37
Airblast and noise problems associated with production blasts 11.39
Chapter 11 references 11.43
Chapter 12: Stabilization and protection measures 12.1
Stabilization methods 12.2
I Stabilization methods that reduce driving forces 12.3
II Reinforcement and support stabilization methods 12.8
III Protection measures 12.18
Example of slope stabilization project 12.24
Chapter 12 references 12.32
Chapter 13: Slope movement monitoring 13.1
Methods of measuring slope movements 13.2
Surface methods 13.3
Subsurface surveying methods 13.10
Interpreting movement results 13.1 I
Chapter 13 references 13.15
Chapter 14: Construction contracts and specifications 14.1
Selecting the type of construction contract 14.1
Writing specifications 14.6
Typical specifications 14.7
Chapter 14 references 14.20
Appendix 1: Analysis of laboratory strength test data A1-1
Appendix 2: Wedge solution for rapid computation A2-1
Appendix 3: Factors of safety for reinforced rock slopes A3-1
Appendix 4: Conversion factors A4-1
Appendix 5: Glossary of blasting and excavation terms AS-1
Appendix 6: Geotechnical data collection manual A6-1
Appendix 7: HP67 slope design programs A7-1
Appendix 8: Practicums A8-1
Appendix 9: Rock mass classification systems A9-1

Chapter 1 Principles of rock slope engineering for highways.

Introduction

This manual Is concerned with the stablil ty of rock slopes, with methods for assessing thls stabllity and with technlques for Improving the stablilty of slopes which are potentialiy hazardous. It Is intended that It serve as both an Instruction manual for engineers corrying out slope stabllity Investigatlons and designing rock slopes, and a gulde for construction englneers Involved with wasvation and stabll Iration. With this purpose in mind, the manual contalns sections on methods of rock slope design, practical exerclses demonstrating the application of these methods, sectlons on blasting, slope stabllization, contracts and contract management.

Economlc consequences of Instabl lity

Rock slope fal lures, or the remedial measures necessary to prevent them, cost money and It Is approprlate that, before becomIng Involved In a detalled examination of slope behavlor, some of the economic impllcatlons of thls behavior should be examined. On transportation routes rock slope stobllity Involves both overall slope fallure, and rock falls from slope faces. Obviously, slopes are cut at the steepest posslble angle In order to minlmize the excavation volume and the disturbance to adjacent property. However, In designing rock slopes It Is essential that the long-term stabllity of the slope be consldered because it Is likely that the excavation must be stab is for many years. Durling this time the rock will weather, It will be subject to lce and water action, plant root growth and possible change In loading conditions due to such activitles as ditch wldening at the toe and construction on the crest. Adequate safeguards to account for these changes should be Incorporated In the dasign because the consequences of Instablilty, as dl scussed below, can be costly.

In examining the economic consequences of slope fal lures one should conslder both direct and indirect costs*(I). For the case of a slope fallure during construction, direct costs would Include such Items as equipment damage, clalms for delays, excevation of the falled materlal and stabll Iration of the remalining slope. Indirect costs would Include such Items as extra englneerlang time, legal foes and, the most signlficantitem, delay to openling of the new highway, or the need to reroute traff Ic.

In the event of rock fall on an operatlonal highway the drect costs are usual ly llmited to cleanling rock from the road surtace, repalring the pavement and doing some stabllizatlon work. Indirect costs Include such Items as Injury to highway users, damage to vehicles, lost wages, hospltal charges, legal fees and highway closure.

One approach to examining the cost beneflts of slope stabllizatlon programs to reduce the incldence of slope fal lures that disrupt highway operatlons, Is to use decislon analysis(2,3,4). Thls technlque relates the cost of uncertaln events, that can be expressed In terms of probabllitles of fallure, to the costs of alternative stabllization programs. The results give expected total costs of fal lure and stabllization for different op-

Numbers refer to llst of references at the end of each Chapter.

Geometry of planar failure in example of bench stability analysis.

Details of slope geometry and material properties used in analysis. Discontinuity surface upon which sliding occurs dips at 45°. The friction angle of the surface is 35° and the cohesion is $\mathbf{1 2 0 0} \mathbf{l b} / \mathrm{sq} . \mathrm{ft}$.
tions which helps the engineer to decide which action produces the greatest economic benefit. Decision analysis is beginning to be used in engineering $(5,6)$ foi lowing its more widespread use in the business community.

A further consideration is that motorists are sometimes successfully suing highway departments for damages and injury caused by rock falls(7). One possible protection against such action is to show that reasonable steps were taken to prevent failure. Usual iy, reasonable steps are the application of proven engineering methods and techniques. The methods described in this manual have been used successfully in practice $(8,9)$ and can be applied, in appropriate conditions, with confidence in the design of rock slopes. This means that designs for individual rock slopes can be prepared rather than using a standard specification such as $1 / 4$ (horizontal) : 1 (vertical).

Example of slope stabilization costs

Possibly the best illustration of slope design can be given by an example which includes a consideration of the most important factors which control rock slope behavior as well as the economic consequences of failure.

In the slope illustrated in the margin sketch which has been designed to be excavated at our angle of $76^{\circ}(1 / 4: 1)$, a discontinuity has been exposed during the early stages of excavation. Measurement of the orientation and inclination of this discontinuity and projection of these measurements into the rock mass shows that the line of intersection of the discontinuity will daylight in the slope face when the height of the slope reaches 50 ft . it is required to investigate the stability of this slope and to estimate the costs of the alternative methods of dealing with the problem which arises if the slope is found to be unstable.

The factor of safety* of the slope, for a range of slope angles, is plotted in Figure 1.2 for the two extreme conditions of a dry slope and a slope excavated in a rock mass in which the groundwater level is very high. it will become clear, in the detailed discussions given later in this manual, that the presence of groundwater in a slope can have a very important influence upon its stability and that drainage of this groundwater is one of the most effective means of improving the stability of the slope.

A slope will fail if the factor of safety falls below unity and from Figure 1.2, it will be seen that the saturated slope will failif it is excavated at an angle steeper than 72 degrees. The dry slope is theoretically stable at any angle but the minimum factor of safety of approximately 1.1 is not considered sufficiently high to ensure that the slope will remain stable. Slopes adjacent to highways are considered to be permanent and a factor of safety of 1.5 should usually be used for design purposes.

[^0]

Figure 1.1: $\begin{gathered}\text { Example of a planar } \\ \text { failure }\end{gathered}$ failure.

Figure 1.2: Variation in Factor of Safety with slope angle.

In this example it would be necessary to cut the slope at an angle of 68 degrees for the dry slope and 61 degrees for the saturated slope in order to achieve a factor of safety of 1.5.

A comparison of costs if failure was to occur, with costs of alternative stabilization measures, can be made by first calculating the estimated volume of failure with increasing slope angle (curve A on Figure 1.3). A slope length of 75 ft . has been taken in this example. One means of stabilizing the slope would be to flatten the slope angle, and curve B shows the extra volume that must be excavated to flatten the slope from 76 degrees.

Also included in this figure are two curves giving the external load, applied by means of cables installed in horizontal holes drilled at right angles to the strike of the slope and anchored in the rock behind the discontinuity planes, required to give a factor of safety of 1.5 for both saturated and dry slopes (curves C and D).

The cost of the various options which are now available to the engineer will depend upon such factors as the physical constraints at the site, e.g. property ownership, and the avai lability of men and equipment to install drain holes and rock anchors. In deriving the costs presented in Figure 1.4, the following assumptions were made:
a) The basic cost unit is taken as the contract price per cubic yard of rock measured in place. Hence l ine B in Figure l. 4 , the cost of flattening the slope, is obtained directly from line B in Figure 1.3.
b) The cost of clearing up a slope failure is assumed to be twice the basic excavating cost. This gives line A which starts at a slope angle of 72 degrees, theoretically the steepest possible saturated slope (see Figure 1.2).
C) The cost of tensioned cables is assumed to be $21 / 2$ cost units per ton of cable load. This gives lines C and D on Figure 1.4 for saturated and dry slopes respectively (factor of safety $=1.5$, Figure 1.3).

On the basis of a set of data such as that presented in Figure 1.4, the engineer is now in a position to consider the relative costs of the options available to him. Some of these options are listed below:
a) Flatten slope to 61 degrees to give a factor of safety of 1.5 under saturated conditions (line B).

Total Cost $=900$ Un its
b) Flatten slope to 67 degrees and install a drainage system to give a factor of safety of 1.5 for a dry slope (line B and E).

Figure 1.3: Excavation volumes and bolt loads.

Line A - Volume to be cleared up if failure occurs.
Line 8-Volume excavated in flattening slope from angle of 76° for 75 ft . long slope.
Line C - Cable load required for Factor of Safety of 1.5 for saturated slope. Line D - Cable load required for Factor of Safety of 1.5 for dry slope.

Figure 1.4: Comparative cost of options.
Line A - Cost of clearing up slope failure. Line B - Cost of flattening slope.
Line c-Cost of installing cables in saturated slope.
Line $D=$ Cost of installing cables in dry slope. Line E-Cost of draining slope.

c) Cut slope to 72 degrees to induce failure and clean up failed material (lines A and B).

Total Cost $=3800$ Units
d) The option of cutting this slope at 76 degrees and installing anchors to give a factor of safety of 1.5 for a standard slope is not feasible because it would be impractical to install the number of cables required (curve C).
e) Cut slope at 76 degrees, install drains and anchors to give a factor of safety for a dry slope of 1.5 (lines D and E).

Total Cost $=2000$ Units
f) Cut slope to 67 degrees on the assumption that it may not fail and make provision to clean up any failure that may occur (lines A and B).

Minimum Total Cost $=450$ Units
Maximum Total Cost $=3850$

It must be emphasized that these estimates are hypothetical and apply to this particular slope only. The costs of these and other options will vary from slope to slope and no attempt should be made to derive general rules from the figures given.

The lowest cost option (option (f)) if the slope does not fail, is to cut the slope to 67 degrees and accept the risk of failure. This risk may be acceptable for a temporary or infrequently used road if it is expected that the s lope $w i l$ not become saturated. However, if the slope were to fail then the total cost would be greater than any of the other options. The option with the next lowest cost is option (a) which involves flattening the slope to 61 degrees so that a factor of safety of 1.5 is obtained under saturated conditions. This has the advantage that no artificial support, which may not work as designed in the long term, is required, but would not be feasible if property restrictions preclude cutting back the slope. If it was necessary that the slope be cut at 76 degrees then it would be necessary to drain the slope as well as put in anchors (option (e)). The effectiveness of the drainage system would be most important because of the sensitivity of the slope to water pressures.

Planning stability investigations

Typically, rock cuts above highways may only suffer very occasional slope failures during their life. How can these i solated slopes which are potentially dangerous be detected in the many miles of slopes along the highway?

The answer lies in the fact that certain combinations of geological discontinuities, slope geometry and groundwater conditions result in slopes in which the risk of failure is high. If these combinations can be recognized during the preliminary geological and highway layout studies, steps can be taken to deal with the slope problems which are likely to arise in these areas. Slopes in which these combinations do not occur require
no further investigation. It must, however, be anticipated that undetected discontinuities wll| be exposed as the slope is excavated and provision must be made to deal with the resulting slope problems as they arise.

This approach to the planning of slope stability studies is outlined in the chart presented in Figure 1.5, and it will be seen that there are two distinct categories:
a) Design of slopes for new construction
b) Evaluation of stability of existing slopes, and design of stabilization programs where required.

Details of the different approaches are as follows:
a) New construction: the first task involves a preliminary evaluation of the geological data available from the route exploration program, which normal ly includes air photo interpretation, surface mapping and study of natural slopes. The study should include the stability of large, regional movements as well as the stabil ity of individual rock cuts.

The prel iminary assessment of stabi l ity can be done using a number of simple techniques which will be described In the first part of this manual. This preliminary study should Identify those slopes in which no failure is Ilkely, and which can, therefore, be designed on the basis of operational considerations, and those slopes in which the risk of failure appears to be high and which require more detailed analysis.

This analysis involves a much more detailed study of the geology, possibly requiring dri I I ing, the groundwater conditions, and the mechanical properties of the rock mass. A detailed analysis of stability is then carried out on the basis of this information to determine maximum safe slope angle, or support requirements.

Chapters 7-10 of this manual will deal with the techniques which can be used for these detailed stabil ity studies.
b) Existing slopes: the major difference between these stability studles and those for new construction, is the greater amount of information available in the case of existing slopes. The exposed face will usually give excellent information on geological conditions and study of past fal lures wi I l demonstrate the type of failure most likely to occur. Back-analysis of these failures would be the most reliable means of determining the rock strength although in some cases it may also be necessary to carry out I aboratory test Ing on fractures not involved in previous failures. If it is suspected that groundwater pressures played a part in the failure It may be necessary to install piezometers to measure the pressure because lt is rare ly poss i ble to obtain this information from observations on the face. In many cases dril ling programs will not be required because more information on geology will be

Figure 1.5: Planning a slope stability program,
available from surface mapping than wi I I be obtained from drill core. This information can be used to design appropriate stabilization measures.

In some cases there may be a number of unstable slopes along many miles of highway and there will be insufficient time and funds available to carry out all the stabilization work. One method of drawing up a long term stabllization program in which the most hazardous slopes are stabilized first, is to make an inventory of stabllity conditions. This inventory would describe the physical and geotechnical conditions of each site, from which a priority rating, related to the probable risk of failure, to be assigned to each slope (10, 10A). This information would identify the most hazardous locations, and the stabilization work required, and would be used to plan a program which woul d start with the slopes having the highest priority rating.

An example of the information that would be collected in maklng an inventory of stablity conditions is shown in Figure 1.6. The Information for all the slopes Is stored In a computerized data base which can be used to retrieve selected data, such as the mileage and priority rating of all slopes where previous rock falls have occurred. Also, the data base facilitates updating of records such as rock fal I events. Once an Inventory of slopes has been completed, priority ratings can be assigned to each slope.

In assigning priority ratings, it is important that a method be used that is consistent, both between sites, and when data is collected by different personnel. The system shown In Figure 1.7 assigns points to each category of data that has an Influence on stability conditions. The total number of points is then added to determine the prlority rating number. The sites can then be ranked according to their rating number, or they can be grouped as shown on the lower part of Figure 1.7. It is considered that grouping of sites with similar ratings is appropriate because assignment of rating numbers is inprecise and requires a certaln amount of judgement. One means of describing priority ratings based on groupings of priority numbers is as follows:

Point Total	Priority Description of Risk	
>500	A)	Moderate probabllity of failure of sutticient volume to cause hazard if failure undatected.
400 to 500	B)	Some probablility of fallure of suff Icient volume to cause hazard If fallure undetected.
250 to 400	c)	Moderate probabillty of fallure of small volumes mich might roach the highway.
250 to 150	D)	Moderate probabillty of localized rocks or rock falls occurring during extrene cl imatic conditions = wry heavy rainfallor run-off, extreme freeze-thaw cycles, etc.
<150	E)	Slight possibility of local ized tallures under extreme climatic conditions. Generallyshallow cuts.

Finally，how long will a slope design program take？The time wi l l range from one half to two hours for a stability assess－ ment（Figure 1．61，to several days for a preliminary investi－ gation for a new construction site，to possibly two months for a detailed study of a critical slope．

STABTITTYASSESSMENT
ーーーーーーーーーーーーーーーーーーーー
Date：March 22， 1988
Priority：A
Region：Weatern Route：$S R$ 1002A
Mileage：81．2 Traffic：Heavy
Alignment：Tangent．
Sight Visibility： 500 yards，east and west．
Average Climatic Conditions：
Coastal－vet with freeze／thaw cycles in spring and fall．
Past Stability Records：
A rockfall in late 1983 was struck by a truck．There are other falls lying in the ditch with volumes up to $1 / 2 \mathrm{cu} . \mathrm{yd}_{\text {；}}$ the foreman report equipment has been used in the past to remove substantial quantities of rock from the ditch．

DESCRIPTION OF SITE

| cut：x | Fill：Other： | Height： 40 ft．Length： $\mathbf{3 0 0}$ ft． |
| :--- | :--- | :--- | :--- |
| Rock：x | Soil： | Other： |

Notes：Through－cut．
Geologic Description：
Strong massive granite with blast damage that has opened substantial cracks．Note heavy tree cover along crest of cut．

Evidence of Water：
Nil．
Work Space Available：
Limited．
DESCRIPTION OF POTENTIAL INSTABILITY
Further rockfalls with volume：
up to at least 5 cu．yds．
RECOMMENDED STABILIZATION
Clean end widen existing ditches， to minimum of 15 ft ．width．Where ditch cannot be excavated，scale
loose rock on slope face．

Figure 1．6：Example of Slope Stability Assessment Sheet．

	Po:NTS I	POINTS 3	POINTS 9	POINTS 27	POINTS B1
SLOPE he IGHT	<15 fT	$1510 \quad 25 \mathrm{Ft}$	25 to 35 ft	351045 Ft	> 45 FI
SLOPELENGTH		Good vislollity and shoulder woth	100 TO $150 \mathrm{Ft}, 150$ T0 200 Fy		>200 FT
VISIBILITYI SHOULDER	Adequate stapplng distance. full shoulder		Moderato visibllity shoulder -ldon	LImltod vislolily and shoulder -ldin	Vory I 13 ml ted visiolility. no shoulder
traffic	Vory llgnt	Recreatlonal only	Modersto	moovy	Yery neavy/ conilnuous
OITCH OIMENS IONS	Moets Ritchle criterla	Adequote widn. Inedequete septh	Moder ate catchment	Llmitod cetchment	NII
geology	Messlve, no fractures olpoing out of slope	Discontinuous prectures. random orlentation	Fractures form weoges	Discontinuous proctures olpoling out of slooe	$\begin{array}{\|c\|} \hline \text { Continuous } \\ \text { fractures dipping } \\ \text { out of slope } \end{array}$
block SIZE	< 61 N	6 TO 12 in	1 ro 2 ft	2 TO 5 FT	, 5 FT
ROCK FRICTION	Rough, Irregular	Undulating	Planar	$\begin{aligned} & \text { Smooth, } \\ & \text { slickensl deod } \end{aligned}$	Clay, gouge faultod
WATER/ICE	Ory, warm winters	Moderate ralntall, warm winters	Moderate ralntall, some freezing	Moderate ralntall. cold winters	Hign rainfall, cold wintars
ROCK FALL	No tolls	Occaslonal minor fatis	Occaslonal talls	Regular talls	$\begin{aligned} & \text { Major talls/ } \\ & \text { slides } \end{aligned}$
	Priority		Point Total		
	A		Greater than 500		
	B		400 to 500		
		C	250 to 400		
		D	150 to 250Less than 150		

Figure 1.7: Slope Stability Rating System

Chapter 1 references

1. CHIN, SHIH-MIAO. Cost as a criterion for evaluating highway level of service, ITE Journal, August 1978 , Page 16.
2. WYLLIE, D.C., MCCAMMON, N.R., BRUMUND, W. Planning slope stabilization programs using decision analysis. TRB, Annual Meeting, January 1978.
3. RUSSELL, S.O. Civil engineering risks and hazards. The B.C. Professional Engineer, January 1976.
4. RAIFFA, H. Decision analysis. Addison-Wesley, Massachusetts, 1970 .
5. ACTON, J.E. Assessment of hazards associated with highway engineering. Proc. Inst. Civ. Engrs., Part 1, 1978, 64, Aug. 381-391.
6. BENJAMIN, J.R. Applied statistical decision theory for dam construct ion. Conference on Dam Safety, Stanford University, 1978
7. ROYSTER, D.L. Lands. 1 ide Remedial Measures. Bull. Assoc. Eng. Geo., Vol XV1, No. 2, 1979, Page 301.
8. HOEK, E. and BRAY, J. Rock Slope Engineering I.M.M., Second EdItlon, 1977.
9. FOOKES, P.G. and SWEENEY, M. Stabil i zation and control of local rock fal $l s$ and degrading rock slopes. Quart. Jour. Eng. Geol, Vol 9, No. 1, 1976, pp. 37-55.
10. BRAWNER, C.O. and WYLLIE. D.C. Rock slope stability on rai Iway projects. American Railway Engineering Association, Vancouver, B.C. October 1975.

10A. WYLLIE, D.C. Rock slope inventory/maintenance programs. FHWA, 13th Northwest Geotechnical Workshop, Portland, OR, 1987 .

Chapter 2 Basic mechanics of slope failure.

ContInuum mechanics approach to slope stabllity
A question which frequently arlses In discussions on slope stablilty is how high and how steep can a rock slope be cut. One approach to thl sproblem, which has been adopted by a number of Investigators(11-15), Is to assume that the rock mass behaves as an elastic continuum. The success wh Ich has been ach leved by the application of techniques such as photoel ast Ic stress analysis or finlte element methods In the design of underground excavatlons has tempted many research workers to apply the sane technlques to slopes. Indeed, from the research polnt of vlew, the resu I ts have been very Interest Ing but In terms of pract ICal rock slope engIneerIng, these methods have $\|$ imited usefulness. These Ilmitat lons ar lse because our knowledge of the mechanlcal propertles of rock masses is so Inadequate that the cholce of moterlal propertles for use In the analysls becones a matter of pure guesswork. For example, If one attempts to calculate the llmiting vertlcal helght of a slope In a very soft I Imestone on the basls of Its Intact strength, a val ue In excess of $3,500 \mathrm{ft}$. Is obtalned(16). Clearly, thls helght bears very llttle relation to reality and one would have to reduce the strength propertles by a factor of at least 10 In order to arrive at a reasonable slope helght.

It Is approprlate to quote ft-an a paper by Terzaghl(17) where, In discussing the problem of foundation and slope stabllity, he sald "... natural condlions may preclude the posslbllity of securling al I the data required for predicting the performance of a real foundation matorlal by analytleal or any other m\&hods. If a stabllity computation is requlred under these condit lons, It Is necessar II y based on assumptlons wh Ich have IIt+ le In common with real lty. Such computations do more harm than good because they divert the designer's attention from the inovltable but Important gaps in hls knowledge . ..".

Muller and hls co-workers In Europe have emphasized for many years the fact that a rock mass is not a contInuum and that Its behavlor Is domlnated by discontInultles such as faults, jolnts and bedding planes. Most practlcal rock slope designs are currently based upon thls discontInuum approach and thls wil be the approach adopted In al 1 the technlques presented In thls book. Howevar, before leaving the quest Ion of the continuum mechanlcs approach, the authors wish to emphesize that they are not opposed In princlple to Its application and Indeed, when one is concerned with overal I displacement or groundwater flow patterns, the results obtalned from a numerical method such as the finlte element technlque can be very useful. Developments In numerical methods such as those reported by Coodman(19) et al and Cundal $1(20)$ show that the gap between the Ideal Ized elastic contlnuum and the real discontInuum Is gradually belng bridged and the authors are optimlstic that the technlques whlch are currently Interesting research methods wllleventually become useful engineering design tools.

MaxImum slope helght - slope angle relationshlp for excavated slopes

Even If one accepts that the stab III ty of a rock mass is dom 1nated by geological discontinulties, there must be situations where the orlentation and inclination of these discontinulties Is such that slmple sllding of slabs, blocks or wedges is not possible. Fallure in these slopes will Involve a combination terlal and one would anticlpate that, In such cases, higher and steeper slopes than average could be excavated. What practical evidence Is there that thls Is a reasonable assumptlon?

A very Important collection of data on excavated slopes was complled by Kley and Lutton(21) and additional data has been obtalned by Ross-Brown(22). The Information refers to slopes In open cut mines, quarries, dam foundatlon excavatlons and $\mathrm{hlgh-}$ way cuts. The slope helghts and corresponding slope angles for the slopes In materlals classified as hard rock have been plotted In FIgure 2.1 rhich Includes both stable and unstable slopes. Ignoring, for the moment, the unstable slopes, this plot shows that the highest and steepest slopes wilch have been successfully excavated, as far as Is known from this collection of data, fall along a fairly clear Ilne shown dashed In Figure 2.1. This line glves a useful practlcal gulde to the highest and steepest slopes wich can be contemplated for normal transportation planning. In some exceptional clrcumstances, higher or steeper slopes may be feaslble but these could only be Justifled If a very comprehensive stabllity study had shorn that there was no risk of Inducing a masslve slope fallure.

Role of dlscontlnultles In slope fallure

Flgure 2.1 shows that, whlle many slopes are stable at steep angles and at helghts of several hundreds of feet, many flat slopes fall at heights of only tens of feet. This difference Is due to the fact that the stabllity of rock slopes varles with Incllnation of discontInulty surfaces, such as faults, jolnts and bedding planes, within the rock mass. When these discontinultles are vertical or horizontal, simple silding cannot take place and the slope fal lure wll Involve fracture of Intact blocks of rock as well as movement along some of the discontinulties. On the other hand, when the rock mass contalns discontinulty surfaces dlpping towards the slope face at angles of between 30° and 70°, simple sllding can occur and the stabl lity of these slopes Is signiflicantly lower than those In wilch only horlzontal and vertical discontinultles are present.

The Influence of the Incllnation of a fallure plane on the stabllity of a slope Is strikingly lllustrated In Figure 2.2 In which the critical helght of a dry rock slope Is plotted agalnst discontinulty angle. In derlving thls curve, it has been assumed that only one set of discontlnultles Is present In a very hard rock mass and that one of these dlscontinultles "dayI Ights" at the toe of the vert Ical slope as shown In the sketch In Figure 2.2. It willbe seen that the critical vertical helght H decreases trom a value In excess of 200 ft., for vertical and horlzontal discontlnultles, to about 70 ft. for a discontinulty Inclination of 55°.

Clearly, the presence, or absence, of discontinultles has a very Important Inf luence upon the stab I I Ity of rock slopes and the detection of these geologlcal features Is one of the most critical parts of a stabllity Investigation. Techn l ques for dealing wlth thls problem are discussed In later chapters of thls book.

Frlctlon, cohesion and unlt wolght

The materlal propertles wich are most relevant to the discusslon on slope stabllity presented In thls book are the angle of

Figure 2. 1: Slope height versus slope angle relationships for herd rock slopes, including data collected by Kley end Lutton 21 and Ross-Brown 22.

Inclined planar dircontinuities which daylight at the toe of a rock slope can cause instability when they are inclined at a steeper angle than the angle of friction of the rock surfaces

Figure 2.2: Critlcal height of a drained vertical slope containing a planar discontinuity dipping at an angle ψ_{p}.
friction, the cohesive strength and the unlt wolght of the rock and soll masses.

Frlctlon and coheslon are best deflined In terms of the plot of shear stress versus normal stress glven In flgure 2.3. Thls plot Is a simplifled version of the results whlch would be obtained If a rock specimen contalning a geological discontinulty such as a Jolnt is subjected to a loading system uhlch causes silding along the discontlnulty. The shear stress τ required to cause sllding Increases with Increasing normal stress σ. The slope of the llne relating shear to normal stress defines the angle of friction \varnothing. If the discontinulty surface Is InItially cemented or If It Is rough, a finite value of shear stress \mathcal{Z} wlibe required to cause sllding when the normal stress level ls zero. This |n|tial value of shear strength defines the coheslve strength c of the surface.

The relationshlp between shear and normal stresses for a typlcal rock surface or for a soll sample can be expressed as:

$$
\begin{equation*}
\tau=c+\sigma \operatorname{Tan} \phi \tag{1}
\end{equation*}
$$

FIgure 2.3: Relationshlp between the shear stress \boldsymbol{Z} required to cause sllding along a discontlnulty and the normal stress σ act Ing across lt.

Description			Unit weight (Saturated/dry) $2 b / f^{3} \left\lvert\, \begin{array}{ll} & \mathrm{kN} / \mathrm{m}^{3}\end{array}\right.$		Friction angle degrees	Cohes ion		
yp		Material			$2 b / \pm t^{2}$	$k P a$		
$\begin{aligned} & \hat{n} \\ & \hat{U} \\ & \hat{j} \\ & \hat{U} \\ & \frac{\hat{U}}{3} \end{aligned}$	\%	Loose sand. uniform grain size Dense sand, uniform grain site Loose sand, mixed grain size Dense sand, mixed grain size	$\begin{aligned} & 118 / 90 \\ & 130 / 109 \\ & 124 / 99 \\ & 135 / 116 \end{aligned}$	19/14 21/17 20/16 21/18		$\begin{aligned} & 28-34 " \\ & 32-40^{\prime \prime} \\ & 34-40 * \\ & 38-46^{*} \end{aligned}$		
	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 5 \end{gathered}$	Gravel, uniform grain size and and gravel. mixed grain size	$\begin{aligned} & 140 / 130 \\ & 120 / 110 \end{aligned}$	$\begin{aligned} & 22 / 20 \\ & 19 / 17 \end{aligned}$	$\begin{aligned} & 34-37^{*} \\ & 48-45^{\prime \prime} \end{aligned}$			
		Basalt Chalk Granite Limestone Sandstone Shale	$\begin{aligned} & 140 / 110 \\ & 80 / 62 \\ & 125 / 110 \\ & 120 / 100 \\ & 110 / 80 \\ & 125 / 100 \end{aligned}$	$\begin{aligned} & 22 / 17 \\ & 13 / 10 \\ & 20 / 17 \\ & 19 / 16 \\ & 17 / 13 \\ & 20 / 16 \end{aligned}$	$\begin{aligned} & 40-50 * \\ & 30-40 " \\ & 45-50^{\prime \prime} \\ & 35-40^{\prime \prime} \\ & 35-45^{*} \\ & 30-35^{\prime \prime} \end{aligned}$			
$\begin{aligned} & s \\ & \stackrel{y}{U} \\ & \dot{E} \\ & 0 \\ & 0 \end{aligned}$	䂞	Soft bentonite Very soft organic clay Soft, slightly organic clay Soft glacial clay Stiff glacial clay Glacial till, mixed grain size	$\begin{gathered} 80 / 30 \\ 90 / 40 \\ 100 / 60 \\ 110 / 76 \\ 130 / 105 \\ 145 / 130 \end{gathered}$	13/6 $14 / 6$ $16 / 10$ 17/12 20/17 23/20	$\begin{array}{r} 7-13 \\ 12-16 \\ \mathbf{2 2 - 2 7} \\ 27-32 \\ 30-32 \\ 32-35 \end{array}$	$\left\|\begin{array}{l} 200-400 \\ 200-600 \\ 400-1000 \\ 600-1500 \\ 1500-3000 \\ 3000-5000 \end{array}\right\|$	$\begin{gathered} 10-20 \\ 10-30 \\ 20-50 \\ 30-70 \\ 70-150 \\ 150-250 \end{gathered}$	
		Hard igneous rocks = granite, basalt, porphyry	$160^{\text {dx }}$ to ${ }^{\text {che }} 190$	25 to 30	35-45	$\begin{aligned} & 720000- \\ & 1150000 \end{aligned}$	$\begin{array}{r} 35000- \\ 55000 \end{array}$	
		Metamorphic rocks quartrite, gneiss. slate	$160 \text { to } 180$	25 to 28	30-40	$\begin{array}{r} 400000- \\ 800000 \end{array}$	$\begin{array}{r} 20000- \\ 40000 \end{array}$	
	-	Hard sedimentary rocks = limestone, dolomite, sandstone Soft sedimentary rock sandstone, coal, chalk, shale	$\begin{aligned} & 150 \text { to } 180 \\ & 110 \text { to } 150 \end{aligned}$	$\begin{aligned} & 23 \text { to } 28 \\ & 17 \text { to } 23 \end{aligned}$	$\begin{aligned} & 35-45 \\ & 25-35 \end{aligned}$	$\begin{gathered} 200000- \\ 600000 \\ 20000 \\ 400000 \end{gathered}$	$\begin{gathered} 10000- \\ 30000 \\ 1000- \\ 20000 \end{gathered}$	

* Higher friction angles in cohesionless materials occur at low confining or normal stresses as discussed in Chapter 5.
** For intact rock, the unit weight of the material does not vary significantly between saturated and dry states with the exception of materials such as porous sandstones.

Typlcal values for the angle of frictlon and cohesion wich are found In shear tests on a range of rocks and sol Is are II sted In Table 1 together with unlt welghts for these materlals. The values quoted In thls table are Intended to glve the reader some Idea of the magnltudes whlch can be expected and they should only be used for obtaining prellminary estimates of the stabllity of a slope.

There are many factors which cause the shear strength of a rock or soll to devlate from the simple linear dependence upon normal stress II lustrated In Flgure 2.3. These var lat lons, together wlth n\&hods of shear tes ${ }^{\text {I }}$ ng. are dl scussed In Chapter 5.

Sllding duo to gravitatlonal loading

Consider a block of welght W resting on a plane surface rhich Is inclined at an angle to the horlzontal. The block is acted upon by gravity only and hence the welght W acts vertlcally downwards as shown in the margin sketch. The resolved part of W which acts down the plane and whlch tends to cause the block to sl Ide Is W SIn \mathbb{W}. The canponent of W wh I ch acts across the plane and wich tends to stablilize the slope is W $\cos \psi$.

The normal stress σ which acts across the potential sllding surface Is given by

$$
\begin{equation*}
\sigma=(w \cos \psi) / A \tag{2}
\end{equation*}
$$

where A Is the base area of the block.
Assuming that the shear strength of thls surface Is def Ined by equation (1) and substltuting for the normal stress from equatlon (2)

$$
\begin{align*}
\tau & =c+\frac{w \cos \psi}{A} \cdot \tan \phi \\
\text { of } \quad P & =c A+w \cos \psi \cdot \tan \phi \tag{3}
\end{align*}
$$

where $R=Z A$ is the shear force wich resists sllding down the plane.

The block wll| be just on the polnt of sllding or In a condltlon of limiting equillbrlum when the disturbing force acting down the plane Is exactly equal to the resisting force:

$$
\begin{equation*}
W \sin \psi=c A+w \cos \psi . \operatorname{Ton} \phi \tag{4}
\end{equation*}
$$

If the conesion $c=0$, the condlion of $\mid l m l+i n g$ equilibrlum deflined by equation (4) simplifles to

$$
\begin{equation*}
\psi=\varnothing \tag{5}
\end{equation*}
$$

Influence of water pressure on shear strength
The Influence of water pressure upon the shear strength of two surfaces In contact can most effectively be demonstrated by the beer can experiment.

An opened beer can fll led wl th water rests on an Inclined plece of wood as shown In the margin sketch.

The forces whlch act In thl s case are prec I sely the same as those acting on the block of rock as shown In the diagram on the prevlous page. for simplicity the coheslon between the beer can base and the wood Is assumed to be zero. Accord I ng to equatlon (5) the can with Its contents of water wllisllde down the plank when $\psi_{f}=$

The base of the can ls now punctured so that water can enter the gap between the base and the plank, glving rise to a water pressure \mathbb{U} or to an uplift force $U=\| A$, where A is the base area Of the can.

The normal force $W \cos \psi / z$ is now reduced by thls up IIf + force U and the resistance to sliding is now

$$
\begin{equation*}
R=\left(W \cos \psi_{2}-U\right) \operatorname{Tan} \phi \tag{6}
\end{equation*}
$$

If the wight per unlt volume of the can plus water is defined as γ_{t} whl le the welght per unlt volume of the water is γ_{w}, then $W=\gamma_{f} \cdot h . A$ and $U=\gamma_{w}, h_{w} \cdot A$, where h and h_{μ} are the helghts defined In the small sketch. From thls sketch It wIII be seen that $h_{w}=n \cdot \cos \psi_{2}$ and hence

$$
\begin{equation*}
u=\gamma_{w} / \gamma_{t} \cdot w \cos \psi_{2} \tag{7}
\end{equation*}
$$

SubstItutIng In (6)

$$
\begin{equation*}
R=w \cos \psi_{2}\left(1-\gamma_{w} / \gamma_{t}\right) \tan \phi \tag{B}
\end{equation*}
$$

and the condition for limiting equillbrlum defined In equation (4) becomes

$$
\begin{equation*}
\operatorname{Tan} \psi_{2}=\left(1-\gamma_{w} / \tau_{c}\right) \tan \phi \tag{9}
\end{equation*}
$$

Assuming the friction angle of the can/wood Interface is 30°, the onpunctured can wll| sl Ide when the plane Is Inclined at ψ $=30^{\circ}$ (from equation (5)). On the other hand, the punctured can wlll silde at a much smaller Incilnation because the uplift force U has reduced the normal force and hence reduced the frictlonal resistance to sllding. The total uelght of the can plus water is only slightiy greater then the welght of the water. Assuming $\mathcal{Z}_{w} / \mathcal{X}_{t}=0.9$ and $\varnothing=30^{\circ}$, equat Ion (9) shows that the punctured can wll| silde when the plane is Inclined at $\psi_{2}=3^{\circ} 18^{\prime}$.

The effectlve stress law

The effect of water pressure on the base of the punctured beer can Is the same as the Influence of water pressure acting on the surfaces of a shear specimen as Illustrated In the margin sketch. The normal stress σ acting across the fallure surface Is reduced to the effective stress $(\sigma-u)$ by the water pressure 4 . The relatlonshl p between shear strength and normal strength deflned by equation (1) now becomes

$$
\begin{equation*}
\tau=\mathrm{c}+(\sigma-u) \operatorname{Tan} \phi \tag{10}
\end{equation*}
$$

In most hard rocks and In many sandy solis and gravels, the 0^{-} hesive and frictional properties (c and \varnothing) of the materlals are not signiflcantly altered by the presence of water and hence,

reductlon In shear strength of these mater la Is ls due, almost entirely to the reductlon of normal stress across fat lure surface. Consequently, It Is water pressure rather than molsture content wich Is Important in defining the strength charactorIstics of hard rocks, sands and gravels. In terms of the stabllity of slopes In these materlals, the presence of a small volume of water at high pressure, trapped withln the rock mass, Is more Important than a large volume of water discharging from a free dralning equiter.

In the case of soft rocks such as mudstones and shales and also In the case of clays, both cohesion and triction can change markedly with changes In molsture content and It Is necessary, when testing thase materlals, to ensure that the molsture content of the materlal durling test ls as close as possible to that wich exlsts In the flold. Note that the of fect live stress law deflned In equatlon (10) stlll applies to these materlals but that, In addition, c and \varnothing change.

The offect of water pressure In a tenslon crack
Conslder the case of the block resting on the inclined plane but, In this Instance, assume that the block Is split by a tenslon crack wich Is fllied with water. The water pressure In the tension crack Increases llnearly with depth and a total force V, due to thls water pressure acting on the rear face of the block, acts down the inclined plane. Assuming that the water pressure is transmitted across the Intersection of the tenslon crack and the base of the block, the water pressure distribution Illustrated In the mergin sketch occurs along the base of the block. Thls water pressure distrlbution results In an upl lft force U which reduces the normal force act $I \mathrm{ng}$ across thls surface.

The condtion of 11 ml ting equillbrlum for thls case of a block acted upon by water forces V and U In addition to Its own weight W Is deflned by
$W \sin \psi+V=c A+(W \cos \psi-U) \operatorname{Tan} \phi$ (II)

From this equation It wll be seen that the distrlbuting force tending to Induce sl Iding down the plane Is Increased and the frictional force resisting sllding Is decreased and hence, both V and U result In decreases In stabllty. Although the water pressures Involved are relatively smal I, these pressures act over large areas and hence the water forces can be very large. In many of the proctical examples considered In later chapters, the presence of water In the slope giving rlse to upllft forces and water forces In tension cracks is found to be cr Itical In control Iling the stabl I lty of slopes.

Reinforcement to prevent sliding

One of the most effective means of stabilizing blocks or slabs of rock which are likely to slide down inclined discontinuity surfaces is to install tensioned rock bolts or cables. Consider the block resting on the Inclined plane and acted upon by the uplift force U and the force V due to water pressure in the tension crack. A rock bolt, tensioned to a load T is installed at an angle \mathcal{B} to the plane as shown. The resolved component of the bolt tension T acting parallel to the plane is T Cos \mathcal{B}

Rock bolt installation to secure loose block.
$\begin{array}{ll}\text { Note: } & \text { Other methods of slope } \\ & \text { stabilization are } \\ & \text { discussed in Chapter } 12 .\end{array}$
while the component acting across the surface upon which the block rests is T sin β. The condition of I imiting equi I ibrium for this case is defined by

$$
\begin{equation*}
W \sin \psi+V-T \cos \beta=c A+(W \cos \psi-U+T \sin \beta) \tan \phi \tag{12}
\end{equation*}
$$

Thls equatlon shows that the bolt tension reduces the disturbIng force acting down the plane and Increases the normal force and hence the frlctional reslstance between the base of the block and the plane.

The minlmum bolt tension required to stabllize the block Is obtalned by rearranging equation (12) to give an expression for the bolt tension T and then minlmizing thls expression with respect to the angle $\beta, 1.0$. set $\alpha T / \alpha \beta=0$, whlch gives

$$
\begin{equation*}
\mathcal{B}=\varnothing \tag{13}
\end{equation*}
$$

Factor of safety of a slope
Al I the equations definling the stabllity of a block on an \ln cl Ined plane have been presented for the condition of IImIt Ing equllibrlum, 1.0. the condition at whlch the forces tending to Induce sllding are exactly balanced by those reslsting sliding. In order to compare the stabllity of slopes under conditions other than those of 11 ml ing equil Ibrlum, some form of Index is requlred and the most commonly used Index Is the Factor of Safety. Thls can be defined as the ratlo of the total force avallable to resist sliding to the total force tending to Induce sliding. Considering the case of the block acted upon by water forces and stab I I I zed by a tensloned rock bolt (- quat lon 12), the factor of safety Is glven by

$$
\begin{equation*}
F=\frac{c A+(W \cos W-U+T \sin B) \operatorname{Tan} \phi}{W \sin W+V-T \cos B} \tag{14}
\end{equation*}
$$

When the slope is on the polnt of fallure, a condition of IImiting equilibrlum exists In which the resisting and disturbing forces are equal, as def Ined by equation (12), and the factor of safety $F=1$. When the slope Is stable, the resisting forces are greater than the disturblng forces and the val ue of the factor of safety wllibe greater than unlty.

Suppose that, In a highway construction sltuation, the observed behavlor of a slope suggests that It Is on the polnt of fallure and It Is decided to attempt to stabll Ize the slope. Equat Ion 14 shows that the value of the factor of safety can be Increased by reducing both U and V, by dralnage, or by Increasing the value of T by Installing rock bolts or tensloned cables. It Is also possible to change the walght W of the falling mess but the Influence of thls change on the factor of safety must be carefully evaluated since both the disturbing and resisting forces are decreased by a decrease In W.

Practical experlence suggests that, In a sltuation such as that described above, an Increase In the factor of safety from 1.0 to 1.3 wil I general ly be adequate for low slopes wich are not requlred to remaln stable for long perlods of tlme. For crltical slopes adjacent to major highways or Important Instaliatlonc, a factor of safety of 1.5 Is usually preferred.

Thls exemple has been quoted because it emphaslzes the fact that the factor of safety Is an Index whlch Is most valuable as a design tool then used on a comparative basis. In thls case, the englneers and management have declded, on the basis of the observed behavior of the slope, that a condition of instabllity exlsts and that the value of the factor of safety is 1.0. It remedal measures are taken, thelr effect can be measured agalnst the condition of slope fallure by calculating the Increase In the factor of safety. Hoek and Londe, In a general revlew of rock slope and foundatlon deslgn methods(23), conclude that the information which ls most useful to the design engineer Is that which Indicates the response of the structure to changes In slgnificant parameters. Hence, decl slons on remedial measures such as dralnage can be based upon the rate of change of the factor of safety, even If the absolute va I ue of the calculated factor of safety cannot be rel led upon with a high degree of certainty. To quote from thls general review: "The functlon of the design engineer Is not to compute accurately but to judge soundly".

In carrying out a feaslbllity study for a proposed transportatlon or clvil engineerling project, the geotechnical engineer frequently lo faced w th the task of designing slopes where none have proviously existed. In this case there Is no background exper lence of slope behavior which can be used as a basls for comparison. The englneer may compute a factor of safety of 1.35 for a particular slope design, based upon the data avallable to hlm, but he has no Idea whether thls value represents an adequatel y stable slope slace he has not had the opportunity of observing the behavlor of actual slopes In this particular rock mass. Under these circumstances, the engInser Is well advised to exerclse caution In the cholce of the parameters used In the factor of safety calculation. Conservatively low values of both cohesion and triction should be used and, If the groundwater conditions in the slope are unknown, the highest antlelpated groundwater levels should be used In the calculation. Sensitivity analyses of the effects of dralnage and rock bolting can stlll be carrled out as In the prevlous case, but having chosen conservatlve rock strength parameters, the slope designer is unlikely to be faced with unpleasant surprises when the slope Is excavated.

In later chapters of thls book, a number of practica I examp I es are glven to II lustrate the varlous types of rock slope des Ign which are I lkely to be encountered by the reader. The problems of obtalning rock strength values, rock structure data and groundwater cond $1+$ lons for use In factor of safety cal culations are discussed In these examples and guldance Is glven on the values of the factor of safety whlch ls approprlate for each type of design.

Slope fallures for wich factors of safety can be calculated

In discussing the basic mechanism of slope fallure, the model of a single block of rock sliding down an inclined plane has been used. Thls is the simplest posslble model of rock slope fallure and, In most practical cases, a more complex fallura process has to be cons Idered. In some cases, the methods of calculating the factor of safety, presented In thls book, cannot be used because the fallure process does not Involve simple gravitatlonal sllding. These cases wll be dl scussed later In

thls chapter. The method of I lmiting equl I lbr lum can be used In analyzing the slope fallures listed below.

Plane fallure
As shown In the margln sketch, plane fallure occurs when a geological discontlnulty, such as a beddling plane, strlkes parallel to the slope face and dips into the excavation at an angle greater than the angle of triction. The calculation of the factor of safety follows preclsely the same pattern as that used for the single block (equation 14). The base area A and the welght W of the sllding mass are calculated from the geometry of the slope and fallure plane. A tenslon crack running parallel to the crest of the slope can al so be Included In the calculation.

A detalled discussion on the analysts of plane fallure is glven In Chapter 7.

Wedge fal lure

When two discontlnultes strike obllquely across the slope face and thelr Ilne of Intersectlon dayllghts In the slope face, the wedge of rock resting on these discontinultles wll I slide down the line of Intersection, provided that the Inclination of this Ilne ls signiflcantiy greater than the angle of frlction. The calculation of the factor of safety Is more compllcated than that for plane fallure since the base areas of both fallure planes as well as the normal forces on these planes must be calculated.

The analysls of wedge fallures Is discussed In Chapter 8.

Circular fallure

When the materlal Is very weak, as In a soll slope, or when the rock mass Is very heavlly jolnted or broken, as In a rock flll, the fallure wlll not be deflned by a single dlscontinulty surface but will tend to follow clrcular fallure path. Thls type of fal lure, III ustrated In the marg In sketch, has been treated In exhaustlve detall In many standard sol I mechanics textbooks and no useful purpose would be served by repetition of these detalled discussions In thls book. A set of circular fal I ure charts Is presented In Chapter 9 and a number of worked examples are inc I uded In th I s chapter to show how the factor of safety can be calculated for slmple cases of circular fallure.

Critical slope helght versus slope angle relatlonshlps
One of the most useful forms In which slope design data can be presented Is a graph showlng the relationshlp between slope helghts and slope angles for fal lure, e.g. the dashed Ilne in Figure 2.1. A number of typlcal slope fallure cases have been analyzed and the relatlonshlps between crltlcalslope helghts and slope angles have been plotted In Figure 2.4. This flgure Is Intended +o glve the reader an overal appreclation for the type of relatlonshlp whlch exlsts for varlous materials and for the role whlch groundwater plays in slope stablilty. The reader should not attempt to use thls f Igure as a bas is for the design of a particular slope since the conditlons may differ from those assumed In deriving the results presented In Figure

Toppling failure in a slatequarry.
2.4. Indlvidual slopes should be analyzed using the methods descrlbed In Chapters 7, 8 and 9.

Slopes for whlch a factor of safety cannot be calculated

The fallure modes which have been dlscussed so far have al I Involved the movement of a mass of materlal upon a fal lure surface. An analysls of fallure or a calculation of the factor of safety for these slopes requires that the shear strength of the fallure surface (deflned by c and ϕ) be known. There are also a few types of slope fallure which cannot be analyzed by the methods already descrlbed, even If the strength parameters of the materlal are known, slince fallure does not Involve simple sliding. These cases are dlscussed on the followling pages.

Toppling fallure
Conslder, once agaln, a block of rock resting on an Incllned plane as shown In Flgure 2.5a. In thls case, the dimensions of the block are deflined by a helght h and a base length b and it Is assumed that the force resl st Ing downward movement of the block Is due to friction only, l.e. c $=0$.

When the vector representing the welght W of the block fal is within the base b, sllding of the block wil occur If the incllnation of the plane ψ Is greater than the angle of friction . However, when the block is tall and slender ($n>b$), the weight vector W can fa I l outside the base b and, when thls happens, the block wl II topple l.e.Itwll rotate about Its I owest contact edge.

The conditlons for sllding and/or toppling of this single block are deflned In Flgure 2.5b. The four reglons In thls dlagram are deflned as fol lows:

Reglon 1: $\mathcal{\psi}<\varnothing$ and $b / h>\operatorname{Tan} \mathscr{H}$, the block Is stable and wll nelther sllde nor topple.
Region 2: $\psi>\varnothing$ and $b / h>\operatorname{Tan} \psi$, the block $w|I| s \mid l d e b u t ~ I t ~$ w íl not topple.
Reglon 3: $\psi<\varnothing$ and $b / h<T a n @$, the block wll topple but it wlll not sllde.
Reglon 4: $\psi>\varnothing$ and $b / h<T a n \& ~ t h e ~ b l o c k ~ c a n ~ s l l d e ~ a n d ~ t o p-~$ ple simultaneously.

In analyzing the stabllity of this block, the methods of llmitIng equllibrium can be used for reglons 1 and 2 only. Fal lure Involving toppling, l.e. reglons 3 and 4 to the right of the curve In flgura 2.5b, cannot be analyzed In thls same way. Methods for dealing with toppl Ing fallure In slopes are discussed In Chapter 10.

Ravel I Ing slopes
Travel lers In mountaln regions will be famlliar with the accumulations of scree wh!ch occur at the base of steep slopes. These screes are general ly small pleces of rock which have become detached from the rock mass and wilch have fal lon as Individual pleces Into the accumulated plis. The cycllc expansion and contractlon assoclatedwith the freezing and thawing of water In cracks and fissures In the rock mass is one of the princlpal causes of slope ravel ling but a gradual deterloration

Figure 2.5a: Geometry of block on inclined plane.

Figure 2.56: Conditions for sliding and toppling of a block on an inclined plane.

Ravelling of the weathered surface material in a slope.

Slumping of columns in vertically jointed dolerite as aresult of weathering in an underlying shale 1 ayer.
of the materlals which cement the Indlvidual blocks together may also play a part In thls type of slope failure.

Weathering, or the deterloration of certaln types of rock on exposure, will glve rise also to a loosenling of a rock mass and the gradual accumulation of materlals on the surface and at the base of the slope. Some of the englneering Impllcations of weatherlng have been revlewed by Goodman(24) who glves a selectIon of useful references on the subject(25-30).

Few ser lous attempts have been made to anal yze the process of slope fallure by ravel Iling since the fal I of smal I Individual pleces of rock does not constitute a serlous hazard. When the stabllity of an accumulatlon of scree or of weathered materlal Is likely to be altered by the excavation of a slope In this material, the stabl|ity of the excavation can be assessed by one of the methods descrlbed In Chapters 7, 8 and 9. Generally, the method of clrcular fallure analysls, descrlbed In Chapter 9, would be used unless the slze of the excavation is such that It Is llkely to cut back Into the undlsturbed rock mass.

It Is Important that the slope desl gner shou Id recognl ze the Influence of weathering on the nature of the materlals with which he is concerned and thls subject wll I be discussed in greater detall In Chapter 7.

Probabilistlc approach to slope dasign
Probabillty theory has two distinct roles In the design of rock slopes:
a. In the analysis of populations or tamll les of structural discontinulties to determine whether there are dominant or preferred orlentations within the rock mass.
b. As a rep lacement for the factor of satety as an Index of slope stabllity (or instabllity).

The first role Is discussed In Chapter 3 whlch deals with the graphical presentation of geologlcal data. The second role, that In whlch probabllity of fallure replaces factor of safety as an Index of slope stabllity, has been strongly advocated by McMahon(31) and has been utl I Ized by a number of other auth-ors(32-35).

It should clearly be understood that the use of probab I I Ity theory In thls latter role does not Influence the other steps In a stabllity Investlgation. The collection of geologlcal data fol lows the same baslc pattern as that descrlbed In thls book. The mechanlcs of fal lure are treated In the same way and the same llmitations apply to the types of fallure whlch can be analyzed. Robabl I lty theory does not, at present, offer any particular advantages In the analysis of toppling, ravel lling or buckl Ing type fal lures.

The authors of thls book have chosen to present al lhe detalled discussions on stabllity onalysis In terms of the factor of safety. This declsion has been made because It ls belleved that the discussion Is less confusing for the non-speciallst reader for whom thls book Is Intended. The reader who feel s that he has understood the baslc principles of slope analysis Is strong I y recommended to examlne the I iterature on the use of
probsbl llty theory to determine for himalit whether ho vishes to replece the factor of satety Index by the probablilty of fallure.
11. BLAKE, W. Stresses and displacements surrounding an open pit in a gravity, loaded rock. U.S. Bureau of Mines Report of Investigations 7002, Aug. 1967, 20 pages.
12. BLAKE, W. Finite element model is excellent pit tool. Mining Engineering, A.l.M.E., Vol. 21, No. 8. 1969. pages 79-80.
13. YU, Y.S., GYENGE, M. and COATES, O.F. Comparison of stress and displacement in a gravity loaded slope by photoelasticity and finite element analysis. Canadion Dept. Energy, Mines and Resources Report MR 68-24 10. 1968.
14. WANG, F.O. and SUN. M.C. Slope stability analysis by finite element stress analysis and limiting equilibrium method. U.S. Bureau of Mine 8 Report of Investigations 7341, January 1970. 16 pages.
15. STACEY, T.R. The stresses surrounding open-pit mine slopes. Planning open pit mines. Johannesburg Symposium, 1970. Published by A.A.Balkema, Amsterdam, 1971, pages 199-207.
16. HOEK, E. The influence of structure upon the stability of rock slopes. Proc. 1st Symposium on Stability in Open Pit Mining, Vancouver, 1970. Published by A.I.M.E. New York, 1971, pages 49-63.
17. TERZAGHI, K. Stability of steep slopes in hard unweathered rock. Ceotechnique. Vol. 12, 1962, pages 251-270.
18. HULLER. L. The European approach to slope stability problems in open pit mines. Proc. 3rd Symposium on Rock Mechanics. Colorado School of Mines Quarteriy, Vol. 54, No. 3, 1959, pages 116-133.
19. GOOOMAN, R.E.., TAYLOR, R.L. and BREKKE, T.L. A model for the mechanics of jointed rock. A.S.C.E. Proceedings, J. Soil Mech. Foundation Div. vol. 94, No. SM3, 1968, pages 637-659.
20. CUNOALL, P.A. A computer model for simulating progressive large-scale movements in blocky rock systems. Symposium on Rock Fracture, Nancy, France. October 1971, Section 2-8.
21. KLEY, R.J. and LUTTON, R.J. Engineering properties of nuclear craters : a study of selected rock excavations as related to large nuclear craters. Report U.S. Army Engineers, No. PNE 5010. 1967, 159 pages.
22. ROSS-BROWN, O.R. Slope design in opencast mines. Ph. D Thesis, Imperial College, London University, 1973, 250 pages.
23. HOEK, E. and LONDE. P. Surface workings in rock. Advances in Rock Mechanics. Proc. 3rd Congress of the International Society for Rock Mechanics, Denver, 1974. Published by National Academy of Sciences, Washington, D.C., 1974, Vol. IA, pages 612-654.
24. GOOOHAN, R.E. Methods of geological engineering in diacontinuous rocks. West Publishing Co., St Paul, Minnesota, 1976, 472 pages.
25. RUXTON, B.P. and BERRY, L. Weathering of granite and associated erosional features in Hong Kong, Bulletin Geological Society of America, Vol. 68. 1957, page 1263.
26. DEERE, D.U. and PATTON, F.D. Slope stability in residual soils, Proc. 4th Pan Americar Conference on Soil Mechanics and Foundatior Engineering, San Juan, Puerto Rico, Vol. 1, 1971. pages 87-170
27. FOOKES, P.C. and HORSWILL, P. Discussion of engineering grade zones. Proc. Conference on In-situ testing of Soils and Rock, Institution of Civil Engineers, London, 1970, page 53.
28. SAUNDERS, H.K. and FOOKES. P.G. A review of the relationship of rock weathering and climate and its significance to foundation engineering. Engineering Geology, Vol. 4,1970, pages 289-325.
29. DEERE, D.U., MERRITT, A.H and COON, R.F. Engineering classification of in situ rock. Technical Report No. AFWL-67-244, Air Force Systems Command, Kirtland Air Force Base, New Mexico. 1969.
30. SPEARS, D.A. and TAYLOR, R.K. The influence of weathering on the composition and engineering properties on in-situ coal measure rocks. international Journal of Rock Mechanics and Mining Sciences, Vol.9, 1972. pager 729-756.
31. McMAHON, B.K. A statistical method for the design of rock slopes. Proc. First Australia-New Zealand Conference on Geomechanics. Melbourne, 1971. Vol.1, pages 314-321.
32. MCMAHON, B.K. Design of rock slopes against sliding on pre-existing fractures. Advances in Rock Mechanics, Proc. 3rd Congress of the International Society for Rock Mechanics, Denver 1974. Published by National Academy of Sciences, Washington D.C., 1974, Vol 11B, page5 803-808.
33. SHUK. T. Optimisation of slopes designed in rock. Proc. 2nd Congress of the International Society for Rock Mechanics, Belgrade, 1970. Vol. 3. Sect. 7-2.
34. LANCEJAN, A. Some aspect5 of safety factors in soil mechanic5 considered as a problem of probability. Proc. 6th International Conference on Soil Mechanics and Foundation Engineering, Montreal.1965, Vol. 2. page5 500-502.
35. SERRANO, A.A. and CASTILLO, E. A new concept about the stability of rock messes. Advances in Rock Mechanios, Proc. 3rd Congress of the International Society for Rock Mechanics. Denver, 1974. Published by National Academy of Sciences, Washington D.C., 1974, Vol. 118, page 5 820-826.

Chapter 3 Graphical presentation of geological data.

Introduction
The dominant role of geological discontinuities in rock slope behavior has been emphasized already and few engineers or geologists would question the need to base stabllity calculations upon an adequate set of geological data. But what is an adequate set of data? What type of data and how much detailed information should be collected for a stabllity analysis?

This question is rather like the question of which came first the chicken or the egg? There is little point in collecting data for slopes which are not critical but critical slopes can only be defined if sufficient information is available for their stability to be evaluated. The data gathering must, therefore, be carried out in two stages as suggested in F i gure 1.5 .

The first stage involves an examination of existing regional geology maps, air photographs, easi ly access1 ble outcrops and any core avallable from site investigations. A prel Iminary analysis of this data will indicate slopes which are likely to prove critical and which require more detailed analysis.

The second stage involves a much more detailed examlnation of the geological features of these critical regions and may require the drilling of special holes along the right-of-way, excavation of test pits and the detailed mapping and testing of discontinuities.

An important aspect of the geological investigations, in either the first or second stages, is the presentation of the data in a form which can be understood and Interpreted by others who may be involved in the stability analysis or who may be brought in to check the results of such an analysis. This means that everyone concerned must be aware of precisely what is meant by the geological terms used and must understand the system of data presentat ion.

The following definitions and graphical techniques are offered for the guidance of the reader who may not already be familiar with them. There I s no implication that these are the best definitions or techniques available and the reader who has become familiar wlth different methods should certainly continue to use those. What is important is that the techniques which are used in any study should be clearly deflned in documents relating to that study so that errors arising out of confusion are avoided.

Definition of geological terms

Rock material or intact rock, in the context of this discussion, refers to the consol ldated and cemented assemblage of mineral particles which form the intact blocks between discontinuities in the rock mass. In most hard igneous and metamorphic rocks, the strength of the intact rock is one or two orders of magnitude greater than that of the rock mass and failure of thls intact material is not Involved generally in the processes of slope failure. In softer sedimentary rocks, the intact material may be relatively weak and failure of this material may play an important part in slope failure.

An ordered structural pattern In slate.

An apparently disordered discontinuity pattern in a hard rock slope.

Rock mass Is the In sltu rock whlch has been rendered discontInwus by systems of structural features such as jolnts, faults and bedding planes. Slope fal lure In a rock mass Is general ly associated with movement of these discontInulty surfaces.

Waste rock or broken rock refers to a rock mass which has been dlsturbed by some mechanlcal agency such as blasting, rlpplng or crushing so that the interlockIng nature of the In situ rock has been destroyed. The behavlor of this waste or broken rock Is similar to that of a clean sand or gravel, the major differences beling due to the angularlty of the rock fragments.

Discontlnultles or weakness planes are those structural features whlch separate Intact rock blocks within a rock mass. Many engineers descrlbe these features collectlvely as Jolnts but this Is an over-simplification since the mechonlcal propertles of these features wlll vary according to the process of thelr fonnatlon. Hence, faults, dykes, bedding planes, cleavage, tension jolnts and shear jolnts al I will exhiblt distinct characterlstics and will respond In different ways to sppl led loads. A large body of llterature dealling with this subject Is avallable and the Interested reader Is referred to thls for further Information $(36,37,38)$. For the purposes of this discussion, the term dlscontlnulty wl| general ly be used to def Ine the structural weakness plane upon wich movement can take place. The type of discontlnulty will be referred to when the description provides Information whlch assists the slope designer In declding upon the mechanical propertles which will be assoclated with a particular discontinulty.

Major discontlnultles are cont|nuous planar structural features such as faults which may be so weak, as compared wlth any other discontlnulty In the rock moss, that they dominate the behav lor of a particular slope. Many of the large fal l ures whlch have occurred on transportat Ion routes have been assoc lated with faults and partlcular attention should be pald to trocing these features.

Discontinulty sets refers to systems of discontinultles whlch have approximately the same Incllnation and orlentation. As a result of the processes Involved In thelr formation(36), most discontinultles occur In famlles which have preferred direct lons. In some cases, these sets are clearly deflned and easy to distlngulsh whlle, In other cases, the structural pattern appears disordered.

Continulty, While mejor structural features such as faults may run for many tens of feet or even ml les, smal ler dl scontinultles such as Jolnts may be very limited In thelr extent. Fallure In a system where discontinultles terminate withln the rock mass under consideration wll I Involve fal lure of the Intact rock bridges between these dlscontInultles. Continulty also has a major Influence upon the permeabll lty of a rock mass since thls depends upon the extent to wich discontinultles are hyaraullcally connected.

Gouge or infllling Is the material between two faces of a structural dlscontlnulty such as a fault. This materlal may be the debrls resulting from the silding of one surface upon another or It may be materlal milch has been precipltated from solution or caused by watherlng. Whatever the orlgin of the

Definition of geonetricalterms

Inflillng materlal In a discontinulty, Its presence wil have an Important Inf Ivence upon the shear strength of that discontinulty. If the thlckness of the gouge ls such that the faces of the discontinutty do not come Into contact, the shear strength will be equal to the shear strength of the gouge. If the gouge layer Is thin so that contact between asperities on the rock surfaces can occur, It wll modify the shear strength of the discontinulty but wII not control it(39).

Roughness. Patton(40,41) emphasi red the Importance of sur face roughness on the shear strength of structural dlscontlnultes In rock. This roughness occurs on both a small scale, Involving grain boundarles and fallure surfaces, and on a large scale, Involving folds and flexures In the dlscontlnulty. The mechanles of movement on rough surfaces will be discussed In the chapter deal Ing with shear strength.

Definition of geometrical terms

Dip Is the maxlmum Inclination of a structural discontinulty plane to the horlzontal, deflined by the angle? In the margin sketch. It Is sometimes very difflcult, when examining an exposed portion of an obliquely Inclined plane, to visuallze the true dip as opposed to the apparent dip whlch ls the IncIInatlon of an erbltrary lline on the plane. The apparent dip Is always smaller than the true dip. One of the simplest models which can be used In visualizing the dlp of a plane Is to consider a ball rolling down an obllquely incilined plane. The path of the ball will always lle along the Ilne of maximum Incllnation wich corresponds to the true dip of the plane.

Dip direction or dip azimuth ls the direction of the horlzontal trece of the Ilne of dip, measured clockwlse from north as Indicated by the angle α in the margin sketch.

Stt-Ike Is the trace of the intersection of an obllquely Inclined plane with a horlrontal reference plane and lt ls at rlght angles to the dip and dip directlon of the ollque plane. The practlcal Importance of the strike of a plane Is that It Is the visible trace of a discontinulty which is seen on the horlzontal surface of a rock mass. In using strike and dlp to defline a plane for rock slope analysis, It ls ossentlal that the direction In thlch the plane dips ls speclfled. Hence, one may detine a plane es hoving a strlkr of N 45 E (or 045°) and a dlp of $60^{\circ} \mathrm{SE}$. Note that a plane dipplng $60^{\circ} \mathrm{NW}$ could also have a strlke of N 45 E.

Throughout thls book, planes will be deflned by thelr dlp and dip directlon. This conventlon has been chosen to avoid any possible confusion and to facilltate computation of slope geometries In later chapters. The same convention has been adopted by some geotechnical consulting organizations for stablilty computer programs. However, geologlsts are free to use strlke and dip measurements for recording their fleld observstions, If this Is the convention preferred by them, and a supplementary program Is used to transform these measurements Into dlps and dip directlons before they are used as Input In the slope stabll lty programs.

Plunge Is the dip of a llne, such as the I I ne of Intersect Ion of two planes or the axls of a borehole or a tunnel.

Trend is the direction of the horizontal projection of a llne, measured clockwlse fran north. Hence, It corresponds to the dip direction of a plane.

In recording dip and dip direction data, many geologists use the system In which these quantitles are witten 35/085. Since the dlp of a plane must $\|$ e between 0° and 90°, the angle deflned by 35 refers to the dip. Simllarly, the angle 085 refers to the dlp direction wich lles between 0° and 360°. The same convent lon can be used to def I ne the plunge and trend of a I Ine In space. The reader is encouraged to adopt thls convention as It will help to ellminate recording errors In the fleld since, even If a flgure Is entered Into an Incorrect column, It wil I be clear that a two diglt number refers to dip and a three diglt number refers to dip direction.

Graphical technlques for data presentation
One of the most Importan+ aspects of rock slope analysis is the systematic collection and presentation of geological data In such a way that It can easl ly be evaluated and Incorporated Into stabl ility analyses. Exper lence has shown that spher Ical projections provide a convenlent means for the presentation of geological data. The engineer or geologlst, who is not familiar with this technique, is strongly advised to study the following pages carefully. A few hours Invested In such study can save many hours of frustration and confusion later when the reader becomes Involved In studying designs and reading reports In which these methods have been used.

Many eng Ineers shy away from spherlcal projectlon methods because they are unf aml I lar and because they appear comp I ex, bearing no recognizable relatlonshlp to more conventionalengineer Ing drawling methods. For many years the authors regarded these graphlcal methods In the same llght but, faced with the need to analyze three-dimenslonal rock slope problems, an effort was made with the ald of a patient geologist col league, and the mystery assoclated with these technlques was rapldly dispel led. This effort has since been repeld many times by the power and flexibllity wilch these graphical methods provide for the rock englneer.

Several typos of spherlcal projection can be used and a comprohenslve discussion on these methods has been glven by PhilIlps(42), Turner and Welss(38), Badgley(43), Frledman(44) and Ragan(45). The projection which Is used exclusively In this book Is the equal area projection, sometimes called the Lambert projection or the Schmidt net.

The equal angle or stereographle projection offers certaln advantages, porticularly when used for geometrical construction, and Is preforred by many authors. Apart from the technlques used In contourling pole populations, to be described later In thls chapter, the constructlons carrled out on the two types of net are identical and the reader wlll have no difflculty in adapt I ng the tochn lques, whlch he has learned using equal area projections, to analyses using stereographic projections.

Equal-area projectlon

The Lembert equal area projoct lon wll|be faml I lar to most readers as the system used by geographers to represent the spherl-

cal shape of the - srth on a flat surfece. In adapting this projection to structural geology, the traces of planes on the surface of a reference sphere are used to def ine the dips and dip directions of the planes. Imagine a reference sphere which is free to move in space but which ls not free to rotate In any direction; hence any radial llne joining a point on the surface to the center of the sphere will have a fixed direction In space. If this sphere is now moved so that Its center I ies on the plane under consideration, the great circle which is traced out by the Intersection of the plane and the sphere will define uniquely the inclination and orientation of the plane in space. Since the sane information is glven on both upper and lower parts of the sphere, only one of these need be used and, In engineering applications, the lower reference hemlsphere Is used for the presentation of data.

In addition to the great circle, the inclination and orientation of the plane can also be defined by the pole of the plane. The pole ls the point at which the surface of the sphere is pierced by the radial line which is normal to the plane.

In order to communicate the Information glven by the great circle and the position of the pole on the surface of the lower reference hemisphere, a two dimensional representation ls obtained by projecting this information onto the horizontal or equatorial reference plane. me method of projection ls i liustrated in Flgure 3.1. Polar and equatorial projections of a sphere are shown In Figure 3.2.

Polar and equatorlal equal-ares nets are presented on pages 3.7 and 3.8 for use by the reader. good undistorted coples or photographs of these nets will be useful in following the examples given in this chapter and later In the book.

The most practical method of using the stereonet for plotting structural information Is to mount it on a baseboard of $1 / 4$ Inch thick plywood as shown in Figure 3.3. A shoot of clear plastic $\mathrm{fl}^{\mathrm{I}} \mathrm{In}$ of the type used for drawing on for overhead projection, mounted over the not and fixed with trensperent adherive tape around its edges, will keep the stereonet in place and will also protect the net markings from demege In use. The structural data ls plotted on a piece of tracing paper or film which Is flxed In position over the stereonet by means of a carefully centered pin as shown. The treaing paper must be free to rotete about this pin end It Is o ssentlal that it is located accurately at the center of the net otherwise slgnificant errors will be introduced into the subsequent analysis.

Before starting any analysis, the North polnt must be marked on the tracing so that a reference position is avallable.

Figure 3.1: Mothod of construction of en equel-aree prow jection.

Equatorial equal-area steroenet marked in 2° intervals
Note: This stereonet is configured for the ploting of great
circles of planes.
Computer drawn by Dr. C. M. St John of the Royal School of Mines, Imperial College, London.

Polar - qual-area stereonet marked in 2° interval
Note: This stereonet is configured for the direct plotting of poles of planes xpressad in the dip/dip direction format.

Computer drawn by Dr. C. M. St John of the Royal School
of Mines, Imperial College, London.

Construction of a great circle and a pole representing a plane.
Conslder a plane dlpplng at 50° In a dlp direction of 130°. The great circle and the pole representing thls plane are constructed as follows:
step 1: WIth the tracing paper located over the stersonet by means of the center pln, trace the clrcumference of the net and mark the north polnt. Measure off the dip direction of 130° clockwlse from north and mark this position on the circumferonce of the net.
step 2: Rotate the traclng about the center pln unt 11 the dip direction mark lles on the W -E axis of the net, l.o. the tracIng Is rotated through 40°. Measure 50° from the outer circle of the net and trace the great clrcle uhich corresponds to a plane dlppling at this angle.
The position of the pole, whlch has a dip of ($90^{\circ}-50^{\circ}$), Is found by measuring 50° from the center of the net as shown or, alternatively, 40° from the outside of the net. The pole lles on the projection of the dip directlon llne uhlch, at thls stage In the construction, Is colncldentwith the W-E axis of the net.
step 3: The tracing is now rotated back +o Its orlginal positlon so that the north mark on the tracing colncldes with the north mark on the net. The flnal appearance of the great clrcle and the pole representling a plane dlpplng a+ $50^{\circ} \ln$ a dlp direction of 130 ' Is as Illustrated.

Determination of the IIne of Intersection of two planes.
Two planes, having dips of 50° and 30° and dlp directions of 130° and 250° respectively, Intersect. It Is required to find the plunge and the trend of the I Ine of Intersect Ion.

Stop 1 : One of these planes has already been descr I bed above and the great clrcle defining the second plane Is obtalned by markIng the 250° dip directlon on the circumference of the net, rotating the tracing $u n+1 \mid$ this mark Iles on the U-E axis and tracing the great circle corresponding to a dip of 30°.

Alternatlve method for finding the Ilne of Intersection of tro planes.

Two planes, dipplng at 50° and 30° In dlp directions of 130° and 250° respectively are deflned by thelr poles A and 8 as shown. The Iline of Intersection of those two planes is defined as follows:
stop 1: Rotate the tracing unt I I both poles I le on the same great circle. This great circle deflnes the plane rhlch contalns the two normals to the planes.
step 2: Find the pole of this plane by measurlng the dip on the U-E of the stereonet. This pole P defines the normal to the plane contalning A and B and, since this normal Is common to both planes, It Is, In fact, the IIne of Intersection of the two planes.

Hence, the pole of a plane wich passes through the poles of two other planes defines the llne of Intorsection of those planes.

Plotting and anelysis of fleld measurements

In plotting flald measurements of dip and dip direction, it is convenlent to work with poles rather then great circles since the poles can be plotted directly on a polar stereonet such as that given on Page 3.8. Suppose that a plane has dip direction and dip values of $050 / 60$, the pole Is located on the stereonet by using the dip direction value of 50 given In italics and then measur Ing the dip value of 60 from the center of the net along the radial I ine. Note that no rotation of the tracing paper, centered over the stereonet, Is requlred for this operatlon and, with a ilttle practice, the plotting can be carrled out very quickly.

There is a temptation to plot the compass readings directiy onto the polar stereonet, wi thout the Intermed late step of enterIng the measurements Into a fleld notebook, but the authors advise agalnst this short-cut. The reason Is that the measure-

Figure 3.4: Plot of poles of discontinuities in a hardrock mass.
ments may well be required for other purposes, such as a computer analysis, and lt Is a great deal easler to work from recorded numbers than from the pole plot. Correcting errors on a pole plot on uhlch several hundred measurements have been recorded Is also difficult and Information can be lost If It has not been recorded elsewhere. Some geologists prefer to use a portable tape recorder, Instead of a notebook, for the recordIng of fleld data, and the reader should not hesitate to experIment to find the method uhlch is best sulted to his own requirements. When plot+ing fleld data it Is recommended that dlfferent symbols be used to represent the poles of different types of structural features. Hence, faults may be represented by heavy black dots, jolnts by open circles, bedding planes by trlangles and so on. Since these structural features are likely to have signlficantly different shear strength characterlstics, the Interpretation of a pole plot for the purposes of a stabll Ity analysis ls simplifled If different types of structure can easily be Identifled.

A plot of 351 poles of bedding planes and joints and of one fault In a hard rock mass Is glven In Flgure 3.4. Since the fault occurs at one particular location In the rock mass, its Influence need only be considered when analyzing the stablil lty of the slope In that location. On the other hand, the bedd I ng plane and jolnt measurements were taken over a conslderable area of rock exposure and these measurements form the bas I s of the stabll Ity analysls of al I other slopes In the proposed excavatlon.

Two distinct pole concentratlons are obvlous In Flgure 3.4; one comprising bedding plane poles In the north-eastern port lon of the stereonet and the other, representing joints, south of the center of the net. The remainder of the poles appear to be fairly wall scattered and no slgniflcant concentrations are obvlous at first glance. In order to determine whether other slgniflcant pole concentrations are present, contours of pole densltles are prepared.

Several methods of contour Ing pole plots have been sugges-ted(41-47) but only two techniques wlil be described In thls book. These technlques are preferred by the authors on the besis of numerous trials in whlch speed, convenlence and accuracy of dlfferent contourlng methods were evaluated.

Dennass curvilinear cell counting method

In order to overcome certaln disadvantages of other contouring technlques, particularly when dealing with pole concentrations very close to the circumference of the net, Denness(46) devised a counting method In uhlch the reference sphere Is divided Into 100 squares. A 18 counting square on the surface of the reference sphere, marked A In the margin sketch, projects onto the equal area stereonet as a curv III near Figure A^{\prime}. When the counting cel l fal ls across the equator of the reference sphere, only the poles fal ling In the lower half of the $1 \$$ cellwil be shown on the stereonet since only the lower part of the reference sphere Is used In the plotting process. The counting cell marked B and Its projection B' Illustrate this situation. Poles which fall above the equator are plotted on the opposite side of the stereonet and hence a count of the total number of poles falling In a is square falling across the equator is obtained

DENNESS TYPE A COUNTING NET

Cells per	Cell radius	
ring	Angle	
17	0.100	360.00
7	0.283	51.43
12	0.447	30.00
18	0.616	20.00
22	0.775	16.37
25	0.923	14.40
28	1.064	12.85

DENNESS TYPE B COUNTING NET

Cells per	Cell radius	
rina	Net radius	
$3 "$	0.172	120.00
10	0.360	36.00
16	0.539	22.50
20	0.700	18.00
24	0.855	15.00
27	1.000	13.33

Figure 3.5: Dimensions of Denness curvilinear cell counting nets.

by summing the poles In the shaded portions of both projections marked B^{\prime}.

Detal Is of the two types of counting net devised by Denness are glven In Figure 3.5. The type A net Is Intended for the anal y sis of pole plots with concentrations near the clrcumference of the net, representing vertically jolnted strata. The type B net Is more sulted to the analysls of poles of Inclined discontinuitles and, since inclined discontlnuitles are of prime concern In the analysls of rock slope stabll lty, thls type of net ls recommended for use by readers of thls book. A type B counting net, drawn to the same scale as the stereonets on pages 3.7 and 3.8 and the pole plot In Figure 3.4 Is reproduced In Figure 3.6 .

> In order to use thls net for contouring a pole plot, a transparent copy or a tracing of the net must be prepared. Note that many photocopy machlnes Introduce signif icant distortlon and scale changes and care must be taken that good undistorted copies of nets with Identlcal dlameters are avallable before starting an analysts.

The transparent count Ing net Is centered over the pole plot and a clean plece of tracing paper ls placed over the count ing net. The center of the net and the north mark are marked on the tracing paper. The number of poles falling In each 1\% counting cel I is noted, In pancli, at the center of each cell. Contours of equal pole density are obtained by Jolning the same numbers

Figure 3.6: Denness Type B curvilinear cell mounting net.

Figure 3.7: Counting circles for use in contouring pole dots.

on the dlagram. If It Is felt that insufficlent information Is avallable In certaln parts of the dlagram, the counting net can be rotated as Indicated by the dashed I Ines In the marg In sketch. The new counting cel I positions are used to generate addltional pole counts which are noted a+ the centers of these cel ls. If necessary, the counting net can be moved off center by a small amount In order to generate addltonal Information In a radial direction.

Contours of equal pole denslties are generally expressed as percentages. Hence, In the case of the 351 poles plotted in Figure 3.4, a 2% contour Is obtalned by joining pole counts of 7 and a pole count of between 17 and 18 corresponds to a contour value of 5\%.

Flooting clrcle counting method

One of the disadvantages of using a countling net to contour a pole plot ls that the geometry of the counting net bears no direct relationshlp to the dlstribution of poles. When a cluster of poles falls across the boundary between two counting cells, a correct assessment of the pole concentrat lon can on ly be obtained by al lowing the cell to "float" fromits orlginal positlon and to center it on the highest concentration of poles. In sane cases, several moves of the counting cell are needed to generate the quantly of Information required for the constructlon of maaningful contours. Considerationo f this counting procedure suggests that an alternative, and perhaps more log 1Cal, procedure is to use a single counting cel I In a "floating" mode, Its movements belng dictated by the distrlbution of the poles themselves rather than by some arbltrarl ly fixed geometrical pattern. This reasoning lles behind the floating of free circle counting method (38) described below.

Flgure 3.7 glves a pattern hich can be used by the reader for the construction of a circle counter for use with stereonets of the dlameter glven on pages 3.7 and 3.8 and In Flgure 3.4. The dlameter of the circles Is one-tenth of the dlameter of the net and, therefore, the area enclosed by these clrcles ls 1% of the area of the stereonet. The clrcles are exactly one net diameter apart and are used together when countling po l es near the circumference of the net.

In order to construct a circle counter, trace the pattern given In Flgure 3.7 onto a clear plastic sheet, using drawing instruments and Ink to ensure an accurate and permanent reproduction. The plastle sheets used for drawing on for overhead projection, unexposed and developed photographlc film or thin sheets of clear rigid plastic are al ideal materlals for a counter. Punch or dril i two smal I holes, approxlmately 1 mm In diameter at the center of each of the smal l clrcles.

The margl n sketch i I I ustrates the use of the circle counter to construct a 3% contour on the pole plot glven In Figure 3.4. One of the small circles Is moved around until It encircles 10 or 11 poles (3% of 351 poles $=10.5$) and a pencil mark Is made through the smal 1 hole at the center of the circle. The clrcle Is then moved to another position at wich 10 or 11 poles fal I within Its clrcumference and another pencil mark Is made. When one of the small circles ls positioned In such a way that a part of It falls outside the stereonet, the total number of poles falling in thls circiels glven by adding the poles In

20 2% ? poles

- 3% - 10 poles
[mim 4\% - 14 poles
N 5\% - 17 poles
6% - 22 poles
this and in the other small circle, which must be located diametrically opposite on the stereonet as shown in the margin sketch. The locus of the small circle center positions defines the 3% contour.

Recommended contour ing procedure

The following procedure is considered to provide an optimum compromise between speed and accuracy for contouring pole plots.
a. Use a Denness type B counting net (Figure 3.6) to obtain a count of the number of poles falling in each counting cell.
b. Sum these individual counts to obtain the total nunber of poles plotted on the net and establish the number of poles per 1% area which correspond to the different contour percentage values.
c. Draw very rough contours on the basis of the pole counts noted on the tracing paper.
d. Use the circle counter (Figure 3.7) to refine the contours, starting with low value contours (say 2 or 3\$), and working inwards towards the maximum pole concentrations.

The contour diagrun illustrated in the margin sketch was prepared from the pole plot in Figure 3.4 in approximately cne hour by means of this technique.

Computer analysis of structural data

Plotting and contouring a few sets of structural geology data can be both interesting and instructive and is strongly recommended to any reader who wishes completely to understand the techniques described on the previous pages. However, faced with the need to process large volumes of such data, the task becomes very tedious and may place an unacceptably high demand on the time of staff who could be employed more effectively on other projects.

The computer is an ideal tool for processing structural geology data on a routine basis and many engineering companies and geotechnical consulting organizations use caputers for this task. A full discussion on this subject would exceed the scope of this chapter and the interested reader is referred to papers by Spencer and Clabaugh(48), Lam(49), Attewell and Woodman(50), and Mahtabet al(51) for details of the different approaches to the computer processing of structural geology data.

Optimum sample size

The collection of structural geology data is time consuming and expensive and it is important that the amount of data collected should be the minimum required to adequately define the geometrical characteristics of the rock mass. In considering what constitutes an adequate definition of the geometry of the rock mass, the object of the exercise must be kept clearly in mind. In the context of this book, the purpose of attempting to def ine the rock mass geometry is to provide a basis for choos ing the most appropriate fa ilure mode. This is one of the most important decisions in the entire process of a slope stability

InvestIgation since an Incorrect choice of the fallure mechanIsm will almost certalnly invalidate the analysis. A hard rock mass, In which two or three strongly developed discontinulty sets show up as dense pole concentrations on a stereoplot, wll usually fall by sllding on one or two planes or by toppling. A single through-golng feature such as a fault can play a dominant role In a slope fallure and It Is Important that such features are Identifled separately In order that they are not lost In the averaging which occurs during the contouring of a pole plot. A soft rock mass such as a coal deposit whlch may be horlzontally bedded and vertically jointed, or a hard rock mass In which jolnt orlentations appear to be random, may fall In a circular mode similar to that wlen occurs In sol I.

Fran thls brlef discussion, It wlll be clear that the collec+Ion and Interpretation of structural geology data for the purposes of slope stabllity analysls cannot be treated as a routine statistical exercise. The rock mass knows nothlng about statistics and there are many factors, In addition to the denslty of pole concentrotions, wh Ich have to be taken Into account In assessing the most llkely fallure mechanlsm In any given slope. An appreclation of the role of these other factors, whlch Incl ude the strength of the rock mass and the groundrater condltions In the slope, wll| asslst the geologist In deciding on how much structural geology data ls required In order that he may make a realistic decision on the slope fallure mechanlsm.

For the reader who has not had a great deal of exper ience In slope stabllity analyses and may flnd It difflcult to declde when he has enough structural geology data, the following guldelines on pole plots has been adapted from a paper by Stautfer(47):

1. First plot and contour 100 poles.
2. If no preferred orlentation Is apparent, plot an add+lonal 300 poles and contour all 400. If the dlagram stil I shows no preferred orlentation, It Is probably a random distrlbution.
3. If step 1 ylolds a single pole concentration with a value of 20% or hlgher, the structure ls probably truly representative and little could be gained by plotting more data.
4. If step 1 results In a single pole concentration with a contour value of less than 20\%, the fol lowing total numbers of poles should be contoured.

12 - 20% add 100 poles and contour al I 200.
8 - 121 add 200 boles and contour all 300.
$4-81$ add 500 to 900 poles and contour al $\mid 600$ to 1,000 .
less than 4% at least 1,000 poles shou Id be contoured.
5. If step 1 ylelds a contour diagram with several pole concentrations, It Is usually best to plot at least another 100 poles and contour al I 200 before attemptIng to determine the optlmum sample slze.
6. If step 5 ylelds 18 contours less than 15° apart and with no pole concentratlons higher than say 5\%, the dlagram is possibly representative of a folded structure for which the poles fall within a girdiedistrlbut lon(45).
7. If step 5 ylelds a diagram with smooth $1 \$$ contours about 20° apart with several 3-6\% pole concentrations, then an additional 200 poles should be added and al í 400 poles contoured.
8. If step 7 results In a decrease In the value of the maximum pole concentrations and a change In the positlon of these concentrations, the apparent pole concentrations on the or iginal plot ware probably due to the manner in which the data were sampled and It Is advisabla to collect new data and carry out a new analysis.
9. If step 7 glvas pole concentratlons In the same posltlons as those glven by step 5, add a further 200 poles and contour al 1600 to ensure that the pole concentrations are real and not a function of the sampl Ing process.
10. If step 5 ylelds several pole concentrations of be+ween 3 and 6\% but with very Irregular 1% contours, at least another 400 poles should be added.
11. If step 5 ylelds several pole concentrations of less than 38 which are very scattered and If the 18 contour Is very Irregular, at least 1,000 and posslbly 2,000 poles will be required and any pole concentration of loss than 2% should be Ignored.

Stautfer's work Involved a very detalled study of the statlstical slgnlficance of pole concentrations and hls paper was not written with any particular application In mind. Consequently, the guldellnes given above should be used for general guldance and should not ba developed Into a set of rulos.

The following cautlon Is quoted from Stauffer's paper:
> "A practiced eye can identify polnt clusters, cell groupIngs and gross symmetry even for sma I I samp I es of weak preferred orlentatlons. It Is probably true, however, that geologists are more prone to call a dlagram preferred than to dismiss it as being random. This is understandable; most geologists examine a diagram with the intento finding something slgnif lcant, and are loath to admit thelr measurements are not meaningful. The result is a general tendency to make interpretations more detalled than the nature of the data actual ly warrants".

The authors feel that It Is necessary to add thelr own words of caution In anphaslzing that a contoured pole dlagrom Is a necessary but not a sufflclent ald In slope stabllity studlas. It must always be used In conjunction with intell igent field observations and a final decision on the method of analysis to be used on a particular slope must be based upon a balanced assessment of al I the aval lable facts.

Evaluation of potentlal slope problems

Different types of slope fallure are assoclated with ditferent geological structures and It Is Important that the slope desIgner should be able to recognize the potential stabll ity problems dur Ing the ear I y stages of a project. Some of the structural patterns wich should be watched for when examining pole plots are outlined on the following pages.

Flgure 3.8 shows the four moin types of fal lure consldered In this book and glves the appearance of typlcal pole plots of
geological conditionslikely to lead to such fallures. Note that In ossessing stabllity, the cut face of the slopemust be Included in the stereoplot sincesilding can only occur as a result of movement towards the free face created by the cut.

The diagrams glven In Figure 3.8 have been simplifled for the sake of clarlty. In an actual rock slope, comblnations of several types of geological structures may be present and thls may glverise to addltional types of fallure. For example, presence of discontinulties wich can lead to toppling as well as planes upon which wedge sllding can occur could lead to the sllding of a budge wich is separated from the rock mass by a "tension crack".

In a typlcal fleldstudy In which structuraldata has been plotted on stereonets, a number of signlflcant pole concentrat lons may be present. It is useful to be able to ldentify those rhich represent potential fallure planes and to ellminate those which represent structures which are unlikely to be Involved In slope fallures. John(52), Panet(53) and McMahon(32) have discussed methods for Identifylng Important pole concentrations but the authors prefer a method developed by Markland (54).

Markland'stest is designed to establlshthe posslbllity of a wedge fallure in which silding takes place along the line of Intersection of two planar discontinultles as ll lustrated In Flgure 3.8. Plane fallure, Flgure 3.8bls also covered by thls test since it ls a special case of wedge fal lure. If contact Is malntalned on both planes, sllding can only occur along the Ilne of Intersection and hence this line of intersection must "deyllght" In the slope face. In other words, the plunge of the llne of Intersection must be less than the dip of the slope face, measured In the directlon of the llne of Intersection as shown in Flgure 3.9.

Aswlllbe shown in the chapter dealling with wedge fallure, the factor of safety of the slope depends upon the plunge of the I Ine of Intersection, the shear strength of the discont l nul ty surfaces and the geometry of the wedge. The llmiting case occurs when the wedge degenerates to a plane, l.e.the dips and dip directlons of the two planes are the same, and when the shear strength of thls plane ls due to frlction only. As already dlscussed, sllding under these conditions Occurs when the dip of the plane exceeds the angle of friction $\boldsymbol{\phi}$ and hence, a first approximation of wedge stablilty is obtalned by considerIng whether the plunge of the line of Intersectlon exceeds the frlction angle for the rock surfaces. Figure 3.90 shows that the slope is potentially unstable when the polnt defining the IIne of Intersection of the two planes falls withinthe area Included between the great clrcle defining the slope face and the circle deflned by the angle of friction ϕ.

The reader who is famllar with wedge analysis will argue that this area can be reduced further by al lowling for the Influence of "wedging" between the two discontinulty planes. On the other hand, the stabllity may be decreased if water Is present in the slope. Exper lence suggests that these two factors wil itend to cancel one another In typical wedge problems and that the crude assumption used In derlving Figure 3.90 Is adequate for most practical problems. It should be remembered that this testis designed to identify critical discontinulties and, having lden-

a. Circular failure in overburden soil, waste rock or heavily fractured rock with no identifiable structural oattern.

b. Plane failure in rock with highly ordered structure such as slate.

c. Wedge failure on two intersecting discontinuities.

d. Toppling failure in hard rock which can form columnar structure separated by steeply dipping discantinuities.

Figure 3. 8: Maintypes of slope failure and stereoplots of structural conditions likely to give rise to these failures.

Figure 3.9a: Sliding along the line of intersection of planes A and B is possible when the plunge of this line is less than the dip of the slope face, measured in the direction of sliding, i.e.

$$
\psi_{f}>\psi_{i}
$$

Slope it3 potentially uns table when inter-
section of great circles representing p lanes falls in shaded region

Pole of great circle passing through pole8 Of planes A and B define8 tine of intersection

$$
\begin{aligned}
\text { Figure } 3.9 \mathrm{C}: & \begin{array}{l}
\text { Representation of planes by } \\
\text { their poles and determination } \\
\text { of the line of intersection }
\end{array} \\
& \begin{array}{l}
\text { of the planes by the pole of }
\end{array} \\
& \text { the great circle which passes }
\end{aligned}
$$

Figure 3.9d: Preliminary evaluation of the stability of a 50° slope in a rock mass with 4 sets of structural discontlnulties.

Wedge failure along α_{I}

Sliding on plane 1 only

overlay for checking wedge failure potentia Z
+ifiod them, a more detalled analysis would normally be necessary In order to defline the factor of safety of the slope.

A refinement to Markland's test has been discussed by HockIng(55) and this retinement has been Introduced to permit the user to differentlate between the sl lding of a wedge along the Ilne of intersection or along one of the planes forming the base of the wedge. If the condlions for Markland's test are sotistled, l.e.the IIne of Intersectlon of two planes falls wlthin the shaded crescent shown In the marg In sketch, and If the dlp direction of elther of the planes fal Is between the dip direction of the slope face and the trend of the lline of Intersectlon, sllding will occur on the steeper of the two planes rather than along the line of Intersection. This additional test Is Illustrated In the margin sketches on this page.

Flgures 3.90 and 3.9 show the discontInulty planes as great clrcles but, as has been dlscussed on the prevlous pages, tleld data on these structures lo normally plotted In terms of poles. In FIgure 3.9 the two discontlnulty planes are represented by thelr poles and, In order to find the line of Intersection of these planes, the method descr lbed on page 3.111s used. The tracing on wich the poles are plotted is rotated until both poles lle on the same great clrcle. The pole of thls great circle deflines the line of Intersection of the two planes.

As an example of the use of Markland's test conslder the contoured stereoplot of poles given In Flgure 3.9d. It Is required to examine the stabllity of a slope face $w i^{\text {th }}$ a dip of 50° and dip direction of 120°. A triction angle of 30° Is assumed for this analysis. An overlay is prepared on whlch the fol lowing Information Is Included:
a. The groat circle representing the slope face.
b. The pole representing the slope face.
c. The triction circle.

This overlay Is placed over the contoured stereoplot and the two are rotated together over the stereonet to find great circles passing through pole concentrations. The lines of Intersection are deflned by the poles of these great circles as shown In Figure 3.9d. From this flgure It wII be seen that the most dangerous combinations of discontinulties are those represented by the pole concentrations numbered 1, 2 and 3 . The \ln tersectlon I_{13} fal is outside the critical area and Is unl lkely t o give rise to Instablilty. The pole concentration numbered 4 Wlll not be Involved In sllding but, as shown In Flgure 3.8d, It could glverise to toppling or the opening of tension cracks. The poles of planes 1 and 2 lie outside the angle In cluded between the dip directlon of the slope face and the line of Intersection I_{12} and hence fallure of this wedge will be by sllding along the line of Intersection I_{12}. However, In the case of planes 2 and 3, the pole representing plane 2 falls within the angle between the dip direction of the slope face and the Ilne of Intersection I_{23} and hence fal lure will be by sllding on plane 2. This wllibe the most critical instabllity condition and w/II control behavlor of the slope.

Suggested method of data presentation and analysis for highway dosign

The following Is an lllustration of how the principles of structural geology and stablitty analysis can be used In high-
way destgn. Suppose that the proposed al Ignment passes through a spur of rock and i^{+}wl I i be necessary to make a through-cut In order to keep the hlghway on grade (see flgure 3.10). The stabllity of the two slopes formed by thls excavation Is assessed In the fol lowing manner.

The structural geology of the rock forming the spur should be determined by surface mapping of outcrops. If there are no outcrops visible, then trenching or drllling may be required. If drllling Is carrled out then the core should be orlented (see Chapter 4) so that the dip and strlke of the major structures can be determ I ned. Suppose that the mapplng (or drilling) showed three major Jolnt sets wich have the fol lowing orlentatlons:

AI: fractures dlp to the south at angles between 20° and 30°.
A2: fractures dip to the eas+ at angles between 70° and 80°.
A3: fractures dlp to the west at angles between 30° and 40°.

Stereonets giving $t h e$ orlenttlons of these three sets are shown on Figure 3.10. Over I al d on each stereonet are grest circles representing the dlp and strlke of the two slopes and the estimated friction angle of the fracture surface. These stereonets show that on the was+ slope, Jol n^{+}se+ A2 d lps towards the excavation but at a steeper angle than the face so that sl IdIng cannot occur. Set 13 dlps away from the excavat Ion and se+ At strlkes at rlght angles to the excavation so that sllding cannot occur on elther of these sets and the slope Is llkely to be stable.

On the east slope joint set AZ dlps steeply away from the excavation and there ls a posslbllity ths+ the thin slabs formed by these Jolnts will fall by toppling. There Is also the possibiI Ity that sllding wil occur on A2 jolnts that dlp towards the excavat lon. Thls would not be a serious stabll Ity problem If the Joints are discontinuous In wilch case only smal i fallures would occur. There Is also the posslblllty that wedge fallures wI I occur where joint sets AI and A2 Intersect.

This prellminary analysis shows that the east cut slope has potentlal stabillty problems and that more detalled investigation of structural geology conditions would be required before finallzing the design. Since It Is rarely posslble to change alIgnment sufficiently to overcome a stablilty problem, It may be necessary to change the slope angle or implement stabllization measures In order to ensure that the slope Is stab le.

Figure 3. 10: Presentation of structural geology information and preliminary evaluation of slope stability of a proposed highway.
36. PrICE, N.J. Fouit and joint development in brittle and semi-brittle rock. Pcrgamon Press, London, 1966. 176 pages.
37. LOUDERBACK. G.D. Faults and engineering geology. In Application of Geology to Engineering practice (Berkey volume). Geological Society of America, 1950, 327 pages.
38. TURNER, F.J. and WEISS. L.E. Structural analysis of metamorphic tectonites. McGraw-Hill Book Co., New York, 1963, 545 pages.
39. GOODMAN, R.E. The deformability of joints. In Determination of the in-situ modulus of deformation of rock. American Society for Testing and Materials Special Technical Publication, Number 477, 1970. Pages 174-196.
40. PATTON, F. D. Multiple modes of shear failure in rock. Proc. Iet International Congress of Rock Mechanics. Lisbon 1966, Vol. 1, pages 509-513.
41. PATTON, F.D. and DEERE, D.U. Significant geological factors in rock slope stability. Plannina open pit mines, Johannesburg Symposium 1970. Published by A.A. Balkema, Amsterdam 1971. pages 143-151.
42. PHILLIPS. F.C. The use of stereographic projections in structural geology. Edward Arnold, London. Third edition (paperback), 1971, 90 pages.
43. BADGLEY, P.C. Stmuctural methods for the exploration geologist . Harper Brothers, New York, 1959, 280 pages.
44. FRIEDMAN. M. Petrofabric techniques for the determination of principal stress directions in rock. Proc. Conference State of Stress in the Earth's crust. Santa Monica, 1963. Elsevier, New York, 1964, pages 451-550.
45. RAGAN, D.M. Structural geology - an introduction to geometricaltechniques. John Wiley 6 Sons, New York, 2nd Edition 1973, 220 pages.
46. DENNESS, B. A revised method of contouring stereograms using variable curvilinear cells. Geol. Mag. Vol 109. Number 2, 1972. pages 157-163.
47. STAUFFER, M. R. An empirical-statistical study of threedimensional fabric diagrams as used in structural analysis. Canadian Journ. Earth Sciences. Vol. 3. 1966, pages 473-498.
48. SPENCER, A.B. and CLABAUGH, P.S. Computer program for fabric diagrams. American Journal of Science. Vo1.265, 1967, pages 166-172.
49. LAM. P.U.H. Computer methods for plotting beta diagrams. American Journa 1 of Science. Volume 267,1969, pages 1114-1117.
50. ATTEWELL P.B. and WOODMAN J.P. Stability of discontin uous rock masses under polyaxial stress systems. Proc. 13th Symposizm on Rock, Mechanics. University of Illinois, Urbana. 1971. pages 665 - b83.
51. MAHTAB, H.A., BOLSTAD,D.D., ALLDREDGE, J.R. and SHANLEY, R.J. Analysis of fracture orientations for input to structural models of discontinuous rock. U.S. Bureau of Mines Report of Investigations. No.669, 1972.
52. JOHN, K.W. Graphical stability analysis of slopes in jointed rock. Joumal Soil Mechanics and Foundation Div. ASCE. Vol. 94, No. SM2, 1968. pages 497-526 with discussion and closure in Vol. 95, No. SM6, 1969, pages 1541-1545.
53. PANET, H. Discussion on graphical stability analysis of slopes in jointed rock by K.W.John. Joumal Soil Mechanics and Foundation Div. ASCE Vo1.95, No. SM2, 1969, pages 685-686.
54. HARKLAND. J.T. A useful technique for estimating the stability of rock slopes when the rigid wedge sliding type of failure is expected. Imperial College Rock Mechanics Research Report No. 19, 1972, 10 Pages.
55. Hocking, G. A method for distinguishing between single and double plane sliding of tetrahedral wedges. Intni. J. Rock Mechanics and Mining Sciences. Vol. 13,1976, pages 225-226.

Introduction

If one examines the amount of time spent on each phase of a rock slope stability investigation, by far the greatest proportion of time is devoted to the collection and interpretation of geological data. However, a search through slope stability l iterature reveals that the number of publications dealing with this topic is insignificant as compared with theoretical papers on the mechanics of slope fai lure (idealized slopes, of course). On first appearances it may be concluded that the engineer has displayed a remarkable tendency to put the proverbial cart before the horse. Deeper examination of the problem reveals that this emphasis on theoretical studies has probably been necessary in order that the engineer (and geologist) should be in a better position to identify relevant geological information and, as a consequence, be in a position to deal with this phase of the investigation more efficiently.

As engineers, the authors would not attempt to Instruct the geologists on how to go about collecting and interpreting geological data. In fact, experience suggests that attempts by engineers to set up elaborate rock classification systems and standard core logging forms have been remarkably unsuccessful because geologists tend to be highly individualistic and prefer to work from their own point of view rather than that decreed by someone else. What has been attempted in this text, is to present an englneer's view of rock slope stability in such a way that the geologist can decide for himself what geological data ls relevant and how he should go about collecting it.

When carrying out investigation programs for highway construction, cost savings can often be achieved by combining both soil and rock exploration work. For example, if drilling is carried out to determine the thickness and characteristics of the overburden, then a drill rig should be used that can also obtain core samples of the bedrock. Similarly, test trenches should be taken to bedrock so that mapping can be carried out in locations where there are few outcrops. Coordination of the rock and soil aspects of an exploration program requires close cooperation between the geologist and the soils engineer and some capromi ses may have to be made to make the best use of ava iable funds.

On the following pages, a review is given of techniques which have been found useful in the geological data collection phase of slope stability investigations.

Regional geological investigations

A frequent mistake in rock engineering ls to start an investigation with a detailed examination of drill cores. While these cores provide essential information, it is necessary to see this information in the context of the overall geological environment in which the proposed road is to exist. Structural discontinuities, upon which local failure of a bench can occur, are related to the regional structural pattern of the area and it is therefore useful to start an investigation by building up a picture of the regional geology.

Air photographs and topographic maps, in varying degrees of detail, are readily available and these provide an important source of information. Where detailed regional geology maps are

The Lake Eggar fault which stretches for many miles across Tasmania

Mapping exposed structures in a rock mass. An aluminium plate is being used for projecting planes.
avallable, these should certalniy be obtalned as early as possible In the investigation.

Stereoscoplc examination of adjacent palrs of alr photographs Is partlcularly useful and even an Inexperlenced observer can detect I I near surface features which usua IIy sign Ify the presence of underlylng geological structures. The exper lenced observer can provlde a surprising amount of relevant Information from an examination of alr photographs and many consultants provide routlne alr-photo Interpratation services. The Interested reader is referred to the excel lent text by MI iler(56) on thls subject.

In addltion to alr photographs, full use should be made of any exposures avallable on site. Adjacent mines or quarries, road cuttings and exposures In river or stream beds are al lexcellent sources of structural information and access to such exposures can normally be arranged through local landowners.

Mapping of exposed structures

Mapping of vislble structural features on outcrops or excavated faces is a slow and tedlous process but there are unfortunately few alternatives to the traditlonal technlques used by the geologlst. The most Important tool for use In mapping Is obvlously the geological compass and many different types are sval lable. An Instrument which has been developed speclfically for the type of mapping required for stabllity analyses Is Illustrated In Flgure 4.1 and the use of thls type of compass, reading directly In terms of dip and dip direction, can save a great deal of tlme. It must be emphaslzed that there are several other types of compess aval I ab lo and that al I of them wi I I do a perfectly edequate Job of structural mapping. Whlch Instrument Is chosen, from those lllustrated In Figure 4.1, Is a matter of personal preference.

Several authors, Including Broadbent and Rippere(57), have discussed the quest lon of the sampl Ing of areas to be mapped and a I Ine sampling method. This Invoives stretching a 100 ft . tape at approximately walst helght along a face or a tunnel wall and recording every structural feature whlch Intersects the tape Ilne. Weaver and Call(58) and Halstead, ot al (59) also used a technlque, which they call fracture set mapping, which Involves mapplng all structures occurrlng $\ln 20 \mathrm{ft}$. $x 6 \mathrm{ft}$. bands spaced at 100 ft . Intervals along a face. Da Silvelra, et al(60) mapped al I structures exposed on the face of a rectangular tunnel.

AI I these methods can be used when an excavated slope or a tunnel Is avallable but, during early exploration studies the geologlst may simply have to make do with whatever exposures are avallable and use his ingenulty to complle as much relevant data as possible. The geologist concerned with mapping surface outcrops, as opposed to excavated faces, must contend with the problem of weatherling and of surface coverlngs of sol 1 and vegetatlon. A novel solution to thls problem was used on the slte Investlgation for the abutments of the Gordon arch dam In Tasmanla where the vegetation and sol l covering on the rock slopes were washed off by means of hlgh pressure water Jets. Thls process exposed the underlylng rock and also accentuated structural features by washing out shallow Inf I IJIngs of weatherlng products. Obvlously, thls technlque is only appllcable

A stereoviewer being used for the examination of a i r photographs.

A more elaborate stereoviewer which can be used for the measurement of differences in elevation from air photographs The instrument illustrated is a model SB180 folding mirror stereoscope manufactured by Rank Precision Industries Ltd., P.O.Box 36 , Leicester LEi 9J8, England.

Figure 4.1: Geological compass designed by Professor Clar and manufactured by F.W. Breithaupt ε Sohn, Adolfstrasse 13.
Kassel 3500, West Germany.

Level compass, release clamp and turn compass until needle points north. Clamp needle.

Read dip of plane. In this example, dip is 35 degrees.

Use coin to turn adjusting screw to correct magnetic deviation. Zero on scale now reads true north.

Read dip direction of plane. In this case, dip direction is 61°

Place measuring plate against rock face and level compass, release needle clamp and reclamp after needle has settled.

The disference in magnetic dectination in different hemispheres results in the needle jouming if a northern hemisphere compass is used in the southem hemisphere. Manufacturers will supply appropriate instrment if hemisphere is specified.

Figure 4.la: A Clar type compass manufactured in East Germany and distributed by Carl Zeiss Jcna Ltd., 2 Elrtree Way, Boreham Wood, Hertfordshire WD6 1NH, England. This instrument has sighting marks and a mirror fitted in the lid so that it can be used to take bearings in the same way as a Brunton compass. It also has a suspended pointer for measuring the inclination of the line of sight. The needle is undamped but it can be clamped in the same way as a Clar compass.

Figure 4.1b: A Brunton compass or pocket transit which is one of the most versatile field instruments for geologists although It Is not as convenient as the Clar compass for the direct measurement of dip and dip direction of planes. This instrument is particularly convenient for taking bearings and for measuring the inclination of the line of right.

Using a high pressure water jet to ciear a rock face

Awild $P 30$ phototheodolite set up for photograpin in ar oper. pit mine

In special cases but lt ls worth considering when critlcal slope problems are anticlpated.

Good geological Information can often be obtalned by mapping In underground excavations which are In the same rock troe as the proposed excavation. Although it ls rare that a nearby tunnel wll exlst, there are clrcumstances where underground mapp I ng may be possible. For example, tunnels are often excavated on hydro-electric and mining projects. Also, In mountalnous terraln, tunnels are often required on rallroads where the grade restrlctlons are more severe than on highways, so Investigation of any nearby rallroads is often worthwhlle.

The rock exposed In a tunnel wll| often be less weathered than the rock outcroppling at the surface. The tunnel may also provide useful Information on ground water conditlons.

All structural mapping technlques suffer from some form of blas since structures paral lel or nearly parallel to an exposed face wlll not dayllght as frequently as those neroendlcular to the face. This-problem has been dlscussed by Terzaghl(61) and most geoiogists apply Terzaghi's correctlons to structural data obtalned trom surface mapping and boreholo cores. However, Broadbent and Rippere(57) argue that these correctlons are excessive when mapplng on a typlcal excavated slope face whlch has been created by normal blasting. In this case the face wil l be highiy Irregular as a result of fracturing control led by discontinulties and the assumptions made by Terzaghl In derlving these corrections are no longer valid. Under such clrcumstances, Broadbent and Rlppere suggest that the data snou I d be presented $w 1$ thout correct Ion.

Photographic mappIng of exposed structures
Before leaving the question of the mapping surface exposures, mention must be made of photogrammetrlc technlques which have been considered for use In structural mapping. Al though not yet In wide use, photogrammetrlc methods offer considerablr advantages and the authors bel leve that they wII IncreasIng Iy be used In rock engineering.

The equlpment required consists of a phototheodollte such as that Illustrated In the margin photograph which Is simply a theodolite with a sultable camera located between the upper and lower clrcles. The fleld set-up Is Illustrated In Flgure 4.2 and a rock face with targets palnted on lt for photogrammetric measurement Is shown In Figure 4.3.

The two plates. taken at the left and rlght hand camera stations (Figure 4.2) are then viewed in a stereocomparator or slmilar Instrument which produces a stereoscoplc model of the overlapplng region on the two plates. Measurements of the x, y and z coordinates of polnts In thls three-dimensionsl model can be made to an accuracy of about 1 part $\operatorname{In} 5,000$ of the mean object distance. Hence, a point on a face photographed from 5,000 ft. can be located to an accuracy of 1.2 Inches.

Photogrametric technlques can be used for both structural mapolng and for quantity surveys of excavation volumes and a num-ber-of companles offer these services on a canmerclal basis. It wou Id exceed the scope of this book to discuss detal Is Of photogrametry and the Interested reader Is referred to the

Figure 4.3:
Rock face with targets painted on it as controls for photogrammetry. On high, steep faces targets painted on metal plates can be lowered on ropes.
publications ilsted at the end of this chapter for further information $(62,63,64)$.

Most people thlnk of photogrammetry In terms of expensive equipment and specialist operators and, whlle thls is true for preclse measurements, many of the princlples can be used to quantlfy photographs taken with a normal hand-held camera. These princlples are described \ln a useful text-book by Wlllams(65).

Measurement of surface roughness
Patton(40) emphasized the Importance of surface roughness on the shear strength of rock surf aces and hls concepts are now widely accepted. The influence of roughness on strength Is dlscussed in the next chapter and the fol lowing remarks are restricted to the measurement of roughness In the field.

A variety of technlques have been used to measure roughness and, In the authors' opinlon, the most practlcal method Is that suggested by Fecker and Rengers(66) and II lustrated In Flgure 4.4, which Is self-explanatory.

Diamond drllling for structural purposes
Many engineers are famlliar with diamond drllling for mineral exploration and some would assume that the technlques used In exploration dri I I ing are adequate for structural lnvestigatlons. This Is unfortunately not the case and special techniques are required to ensure that continuous cores whlch are as nearly undlsturbed as possible are obtalned. It should be remembered that it is the discontinultios and not the Intact rock which control the stabllity of a rock slope and the nature, infliling, Inclination and orlentation of these discontinulties are of vital Importance to the slope designer.

Contracts for mineral exploration drl I IIng are normal ly negotiated on a fixed rate of payment per foot or meter drllied. In order to keep these rates low dr I I I Ing contractors encourage their drlilers to alm for the maximum length of hole per shift. In addition, machlnes are run frequently beyond thelr effective life In order to reduce capital costs. These practlces result in relatively poor core recovery In fractured ground and It can seldom be clalmed that the core is undisturbed.

To negotlate a geotechnical drililing contract on the sane basis as a mineral exploration program Is to Invite trouble.

Good quality undisturbed core can only be achloved If the driller has tine to "feel" hls way through the rock and If he Is using first class equipment. Consequently, many geotechnlcal englneers attempt to negotlate contracts In terms of payment for core recovery rather than the length of hole dr I I I ed. A Iternatively, payment on an hourly rate rather than a dr ililing rate removes the pressure from the drll ler and permits him to olm at quallty rather man quantity \ln hls drllilng.

In addition to providing financialincentives for the drilier, It Is essential to - nsuro that hls equipment ls designed for the Job, In good working order and that lt ls correctly used.

A simple conducting paper electrical ana logue model for the study of grounchater flow. Photograph courtesy Bougainville Copper Limited.
methods for constructing flow nets(174) have now largely been superseded by analogue(175.176) and numerlcal methods(177).

An exemple of an electrical resistance analogue for the study of anlsotroplc seepage and dralnage problems is Illustrated In Flgure 6.8. Some typlcal examples of equlpotentlal distributlons, determined with the ald of thls analogue, are reproduced In Flgure 6.9.

Fleld measurement of permeabllity

Determination of the permeablilty of a rock mass is necessary If estimates are required of groundwater discharge from a slope or if an attempt is to be made to design a dralnage system.

For evaluation of the stabllity of the slopes It Is the water pressure rather than the volume of groundwater flow In the rock mass which Is Important. The water pressure at any polnt Is Independent of the permeabl llty of the rock mass at that polnt but It does depend upon the path followed by the goundrater In arriving at the point (Figures 6.2 and 6.9). Hence, the anlsotropy and the distribution of permeabllity In a rock mass is of Interest In estlmating the wator pressure distribution In a slope.

In order to measure the permeabl I Ity at a "polnt" In a rock mass, It is necessary to change the groundwater conditions at that polnt and to measure the time taken for the orlginal conditions to be ro-establlshed or the quantlty of water necessary to malntaln the new conditions. These tests are most conveniently cerrled out In a borehole In which a section Is isolated between the end of the casing and the bottom of the hole or between packers within the hole. The tests can be class I flod as fol lows:
a. Fall Ing head tests In which water Is poured Into a vartical or near vertical borehole and the tlme taken for the water level to fall to Its orlginal level is determlned.
b. Constant head tests In which the quantly of water which has to be poured Into the borehole In order to maintaln a specific water level is measured.
c. Pumping tests or Lugeon tests in which water is pumped into or out of a borehole section between two packers and the changes induced by this pumping are measured.

The flrst two types of test are sultable for measurement of the permeability of reasonably unlform solls or rock. Anlsotroplc permeablilty coefficients cannot be measured directly In these tests but, as shown In the example glven below, allowance can be made for this anisotropy In the calculation of permeablilty. PunpIng tests, al though more expensive, are more sul tab le for permeablilty testing in jolnted rock.

Fal I Ing head and constant head tests
A very comprehensive discussion on fal I Ing head and constant head permeabllty testing Is glven by Horsloy(179) and a few of the points which are directly relevant to the present discussion are summarlized on page 6.12.

Figure 6.7 : Two-dimensional flow net in a slope.

Figure 6.8: Electrical analogue for the study of anisotropic groundwater flow and drainage problems 171 .

Louls(170) polnts out that equation (33) only applies to laminar flow through planar parallel fissures and that lt gives rise to signif lcant errors If the flow veloclty ls high enough for turbulrnt flow to occur, If the flssure surfaces are rough or If the flssures are lnf llled. Loulsilsts no fewer than 8 equations to describe flow under varlous conditions. Equat lon (33) glves the highest equlvalent permeabllity coefflcient. The lowest equivalent permeablility coeff lclent, for an Infilled flssure system, Is glven by

$$
\begin{equation*}
k=\frac{e}{b} \cdot k_{f}+k_{r} \tag{34}
\end{equation*}
$$

where K_{f} is the permeabllity coefficient of the Infililing materlal, and
K_{μ} Is the permeablllty coefficient of the intact rock.
(Note that K_{r} has been Ignored In equation (33) since It wil I be very mall as compored with permeabllty of open jolnts).

An example of the application of equation (33) to a rock mass with two orthogonal jolnt systems is given In Flgure 6.6. This shows a mojor jolnt set In which the jolnt opening e, is 0.10 an and the spacing between joints $1 \mathrm{~s} b_{f}=1 \mathrm{~m}$. The equivalent permeabllity k_{l} parallel to these jolnts ls $k_{f}=8.1 \times 10^{-2} \mathrm{~cm} /$ sec. The minor joint set has a spacing $b_{2}=1$ Jolnt per meter and an opening $e_{2}=0.02 \mathrm{~cm}$. The equivalent permeablity of thls set Is $k_{Z}=6.5 \times 10^{-4} \mathrm{~cm} / \mathrm{sec}$., l.e. more than two orders of magnitude smaller than the equivolent permeabl I ity of the major jolnt set.

Clearly the groundwater flow pattern and the dralnage characterlstics of a rock mass In whlch these two jolnt sets occur would be signiflcantly Influenced by the orlentation of the joint sets.

Flow nets
The graphlcal representation of groundwater flow In a rock or soll mass is known as a flow net and a typlcal example Is II lustrated In Figure 6.7. Several features of this f low net are worthy of consideration.

Flow Ilnes are paths followed by the water In flowing through the saturated rock or sol 1.

Equipotentialilnes are Ilnes Jolning points at which the total head h Is the same. As shown In Flgure 6.7, the water level Is the rune In boreholes or standplpes which terminate at points A and B on the sane equipotentlalilne.

Water pressures at polnts A and B are not the same since, according to equation (32), the total head h Is given by the sum of the pressure head $P / \mathcal{Y}_{\boldsymbol{W}}$ and the elevat ton z of the measuring polnt above the reference datum. The water pressure Increases with depth along an equipotentialline as shown In Flgure 6.7.

A complete discussion on the construction or computation of flow nets exceeds the scope of th ls book and the Interested reader Is referred to the comprehensive texts by Cedergren(166) and Haar(i73) for further detalls. Traditlonalgraphlcal

Figure 6.5: Influence of joint opening e and joint spacing b on the permeability coefficient k in the direction of a set of smooth parallel joints in a rock mass.

Figure 6.4:

| | TABLE V - PERMEABILITY COEFFICIENTS FOR TYPICAL ROCKS AND SOILS | |
| :--- | :--- | :--- | :--- | :--- |

Permeability conversion table	
To convert om/sec	Multiply by
to:	
Meters $/ \mathrm{min}$	0.600
$\mathrm{u} / \mathrm{sec}$	10^{4}
$\mathrm{ft} / \mathrm{sec}$	0.0328
$\mathrm{ft} / \mathrm{min}$	1.968
$\mathrm{ft} /$ year	1.034×10^{6}

above a reference datum and the quantlity of water floring through the sample In a unit of time is Q. According to Darcy's law, the coefficlent of permeabllity of this semple ls defined os(165,166,167):

$$
\begin{equation*}
k=\frac{P \cdot 6}{A\left(n_{1}-n_{2}\right)}=\frac{V \cdot l}{\left(n_{1}-n_{2}\right)} \tag{31}
\end{equation*}
$$

where V Is the discharge velocity. Substltution of dimensions for the terms In equation (31) shows that the permeabll Ity coefflcient k has the same dimensions as the discharge velocity V , l.e. length per unit time. The dimension most commonly used In groundwater studies is contimeters per second and typlcal ranges of permeabllity coefficients for rock and soil are given In Table V. Flgure 6.5 shows that the total head h can be expressed In terms of the pressure p at the end of me sample and the height z above a reference datum. Hence

$$
\begin{equation*}
h=\frac{P}{\gamma_{w}}+z \tag{32}
\end{equation*}
$$

where $\boldsymbol{\gamma}_{\boldsymbol{w}}$ ls the density of water. As shown In Figure 6.5, h Is the helght to which the rater level rlses In a borehole standplpe.

Permeabl I Ity of jolnted rock
Tab I e V shows that the permeabl I Ity of Intact rock Is very low and hence poor drainage and low discharge would normally be expected In such materlal. On the other hand, If me rock Is discontinuous as a result of me presence of Jolnts, fissures or other discontlnultles, the permeablilty can be cons lderably higher because these discontinultles act as channels for the water f low.

The flow of water through fissures in rock has been studied in great detail by Huitt(168), Snow(169), Louis(170), Sharp(171), Maini(172) and others and the reader who wishes to pursue this canplex subject is assured of many happy hours of reading. For the purposes of this discussion, the problem is simplified to that of the determination of the equivalent permeabi 1 ity of a planar array of parallel smooth cracks(170). The permeability parallel to this array is given by:

$$
\begin{equation*}
k=\frac{9 e^{3}}{12 v \cdot 6} \tag{33}
\end{equation*}
$$

where $\quad \mathrm{g}=\mathrm{gravitat}$ ional acceleration (981 cm/sec.2). e = openl ng of cracks or fissures
b = spacing between cracks and
\mathcal{V} is the coefficlent of kinematic viscosity (0.0101 $\mathrm{cm}^{2} / \mathrm{sec}$. for pure water at $20^{\circ} \mathrm{C}$).

The equivalent permeabl I lty k of a parallel array of cracks with different openings is plotted in Figure 6.5 which shows that the permeabl I lty of a rock mass Is very sensit Ive to the opening of discontinultes. Since this opening changes with stress, me permeabllity of a rock mass will, therefore, be sensltive to stress.

Figure 6.2: Conf ined, unconfined and perched water in a simple stratigraphic sequence of sandstone and shale. After Davis and de Wiest ${ }^{163 .}$

Figure 6. 3 :
Solution channel in limestone. The hydraulic conductivity of such a channel would be very high as compared with the permeability of the intact rock or of other dircontinuities and it would have a major influence on the groundwater flow pattern in a rock mass.

Figure 6.1: Simplified representation of a hydrologic cycle showing sane typical sources of groundwater.

After Davisand De Wiest ${ }^{163}$.

Groundwater flow In rock masses

There are two possible approaches to obtalning data on water pressure distributions within a rock mass:
a. Deduct lon of the overall groundwater flow pattern from conslderation of the permeablility of the rock mass and sources of groundwater.
b. Direct measurement of water levels In boreholes or wel ls or of water pressure by means of plezometers Installed in boreholes.

As wlll be shown In thls chapter, both methods abound with practlcal difflculties but, because of the very Important Influence of water pressure on slope stabll lty, It Is essential that the best possible estimates of these pressures should be avallable before a detalled stabllity analysls is attempted. Because of the large number of factors uhlch control the groundwater flow pattern In a partlcular rock mass, It Is only possible to highlight the general princlples uhlch may apply and to leave the reader to declde what comblnations of these princlples is relevant to hls specific problem.

The hydrologic cycle
A simpllfled hydrologic cycle Is lllustrated In Flgure 6.1 to show some typ lca l sources of groundwater In a rock mass. Thls figure Is Included to emphasize the fact that groundwater can and does travel conslderable distances through a rock mass. Hence, just as It Is Important to consider the reglonal geology of an area when starting the design on a highway, so It Is Important to consider the reglonal groundwater pattorn when estimating probable groundrater dlstributions at a particular site.

Clearly, precipltation In the catchment area Is an Important source of groundrater, as suggested In the sketch opposite, but other sources cannot be Ignored. Groundwater movement from adjacent river systems, reservolrs or lakes can be significant, particularly If the permeabllity of the rock mass ls highly anisotroplc as suggested in FIgure 6.2. In extreme cases, the movement of groundrater may be concentrated In open flssures or channels in the rock mass and there may be no clearly Identiflable water table. The photograph reproduced In Figure 6.3 shows a solutlon channel of about 1 Inch In diameter In IImostone. Obvlously, the hydraulic conductlvity of such a channel would be so high as compared with other parts of the rock mass that the conventional plcture of a groundwater flow pattern would probably be Incorrect In the case of a slope In which such features occur.

These examples emphasize the extreme Importance of considering the geology of the site when stlmating water table levels or when Interpreting water pressure measurements.

Def Inltion of permeablilty
Consider a cyllndrical sample of sol I or rock beneath the water table In a slope as Illustrated In FIgure 6.4. The sample has a cross-sectional area of A and a length l. Water levels In boreholes at - Ithw end of this sample are at helghts $h_{\text {, and }} h_{2}$

Chapter 6 Groundwater flow; permeability and pressure.

Introduct Ion

The presence of groundwater In the rock mass In a slope obove a highway has a detrimental effect upon stablilty for the followIng reasons:
a. Water pressure reduces the stabllity of the slopes by reducing the shear strength of potential fallure surfaces as descrlbed on pages 2.6 and 2.7. Water pressure In tension cracks or slmilar near vertlcal flssures rem duces stabllity by lncreasing the forces tending to Induce sliding (page 2.8).
b. HIgh moisture content results In an Increased unlt welght of the rock and hence gives r I se to Increased haulage costs during constructlon. Changes In molsture content of some rock, partlcularly shales, can cause accelerated weatherling with a resulting decrease In stabllty.
c. Freezing of groundwater during winter can cause wedging In rater-f I I led fissures due to temperature dependent volume changes In the lce. Freezl ng of surface water on slopes can block dralnage paths resulting In a bulld-up of water pressure In the slope with a consequent decrease In stabllity.
d. Erosion of both surface sol Is and fissure Inf I I I Ing occurs as a result of the velocity of flow of groundwater. Thls erosion can glve rise to a reduction in stabllity and also to silting up of dralnage systems.
e. Discharge of groundwater from slopes above a hlghway can glve rise to Increased malntenance costs as a result of pavement deterloration and the need for higher capaclty dralnage systems. During construction there wll be the difflculties of operating heavy equlpment on wet ground and blasting costs are Increased by wet blast holes.
f. Llquefaction of overburden solls or flils can occur when water pressure withln the material rises to the polnt where the upl Ift forces exceed the wolght of the sol I. Thls can occur lf dralnage channels are blocked or If the sol i structure undergoes a sudden volume change as can happen under earthquake conditions.

Liquefaction Is critically Important In the design of foundatlons and sollfllis and It Is dealt with In the references numbered (159-162) ilsted at the end of thls chapter. It will not be consldered further In this book since lt does not play a signiflcant part In control $1-$ Ing the stabllity of rock slopes.

By far the most Important effect of the presence of groundwater In a rock mass ls the reduction In stabll lty resulting from water pressures withln the discontinulties In the rock. Methods for including these water pressures Into stabllity calculations are dealt with In later chapters of this book. This chapter Is concerned with methods for estimating or measuring these water pressures.
152. HAMEL, J.V. The slide at Brilliant cut. Proc. $13 t h$ Symposium on Rock Mechanics. Urbana, Illinois. 1971, pages 487-510.
153. LEY, G.M.M. The properties of hydrothermally altered granite and their application to slope stability in opencastmining. M.Sc Thesis, London University, Imperial College. 1972.
154. MIDDLEBROOK, T.A. Fort Peck slide. Proc. American Society of Civil Engineers. Vol. 107. paper 2144, 1942, page 723.
155. FLEMING, R.W., SPENCER, G.S and BANKS, D.C. Empirical study of the behaviour of clay shale slopes. US Armu Nuclear Cratering Croup Technical Report No. 15, 1970
156. HUTCHINSON. J.N. Field and laboratory studies of a fall in upper chalk cliffs at Joss Bay, Isle of Thanet. Proc. Roecoe Memorial Symposium. Cambridge, 1970.
157. HOEK. E. and RICHARDS, L.R. Rock slope design review. Golder Associates Report to the Principal Government Highway Engineer, Hong Kong. 1974, 150 pages.
158. STIMPSON, B., METCALFE,R.G and WALTON, G. A new technique for sealing and packing rock and soil samples. Quarterly Journal of Engineering Geology. Vol. 3, No. 2. 1970, pages 127-133.

15 BA. Wyllie, D.C., Munn, F.J. The use of movement monitoring to minimize production losses due to pit slope fal lures. Proc. of Frost International Conference on Stabllity in Coal Mining, Vancouver, Canada, 1978, Mi I ler Freemen Publications.
137. MARSAL, R.J. Mechanical properties of rockfill. In hhbankment Dwn Engineering - Caeagrande Volume. Edited by R.C.Hirschfeld and S.J.Poulos, Published by J.Wiley b Sons, New York. 1973, pages 109-200
138. MARACHI, N.D., CHAN, C.K and SEED, H.B. Evaluation of properties of rockfill materials. J. Soil Meckanics and Foundation Division, ASCE. Vol. 98, No. SM1,1972, pages 95-114.
139. WILKINS, J.K. A theory for the shear strength of rockfill. Rock Mechanics. Vol. 2, 1970, pages 205-222.
140. BARTON. N., LIEN, R. and LUNDE, J. Engineering classification of rock masses for the design of tunnel support. Rock Meckanics, Vol. 6, 1974, pages 189-236.
141. BIENIAWSKI, Z.T. Geomechanics classification of rock masses and its a,oolication in tunnellino. Proce. 3rd Intri2. Cong. Rock Mech., Denver, Vol 11 A, 1974.
142. JAEGER, J.C. The behaviour of closely jointed rock. Proc. 11th Symposium on Rock Mechanics. Berkeley, 1970, pages 57-68.
143. BISHOP, A.W and HENKEL, D.J. Tke measurement of soil properties in the triaxial test. Published by Edward Arnold, London. 2nd. Edition, 1962.
144. COATES, D.F., CYENCE, M and STUBBINS, J.B. Slope stability studies at Knob Lake. Proc. Rock Mechanics Symposium. Toronto. 1965, pages 35-46.
145. WHITMAN, R.V. and BAILEY. W.A. Use of computers for slope stability analysis. U. Soil Mechanics and Foundation Division, ASCE. Vol. 93, 1967, pages 475-498.
146. HOEK, E. Estimating the stability of excavated slopes in opencastmines. Trans. Institution of Mining and Metallurgy. London. Vol. 79, 1970, pages A109-A132.
147. HOEK, E. Progressive caving induced by mining an inclined ore body. Trans. Institution of Mining and Metallurgy. London. Vol. 83, 1974, pages A133-A139.
148. ROBERTS, O, and HOEK, E. A study of the stability of a disused limestone quarry face in the Mendip Hills, England. Proc.1st. Intnl. Conference on Stability in Open Pit Mining. Vancouver. Published by AlME, New York, 1972, pages 239-256.
149. SKEMPTON, A.W.and HUTCHINSON. J.N. Stability of natural slopes and embankment foundations. State of the art report. Proc. 7th Intnl. Conference on Soil Mechanics. Mexico. Vol. 1, 1969, pages 291-340.
150. HAHEL, J.V. The Pima mine slide, Pima County, Arizona. Geological Society of America Abstracts With Prograns. Vol. 2, No. 5, 1970, page 335.
151. HAHEL. J.V. Kimberley plt slope failure. Proc. 4 th Panamerican Conference on Soil Meckanice and Foundation Engineering. Puerto Rico. Vol. 2, 1971, pages 117-127.
123. BERNAIX, J. New laboratory methods of studying the mechanical properties of rocks. Intri. J. Rock Mechanics and Mining Sciences. Vol.6, 1969. pages 43-90.
124. SCHULTZE, E. Large scale shear tests. Froc. 4th Intni. Conferenceon Soil Mechanics and Foundation Engineering. London, Vol.1, 1957, pages 193-199.
125. EURENIUS, J. and FAGERSTROM, H. Sampling and testing of soft rocks with weak layers. Geotechnique. Vol.19, No. 1, 1969, pages 133-139.
126. UNDERWOOD,B.L. Chalk foundations at four major dams in the Missouri River Basin. Traris. Eti. Intri. Congress on Large Dams. Edinburgh, Vol.1,1964, pages 23-47.
127. SERAFIM, J.L. and GUERREIRO, M. Shear strength of rock masses at three Spanish dam sites. Proc. Intri. Rock Mechanics Symposium. Madrid. 1968, pages 147-157.
128. COATES, D.L., McRORIE,K.L. and Stubbins, J.b. Analysis of pit slides in some incompetent rocks. Trans. Societe of Mining Engineers. AFME. 1963, pages 94-101.
129. MULLER, L. and PACHER, P. Mode! Iversuche zur Klarung der Bruchgefahr geklufteter Medien. Rock Mechanics and Engineering GeoZogu. Supplement 2, 1965, pages 7-24.
130. JOHN, K.W. Civil engineering approach to evaluate strength and deformability of regularly jointed rock. Proc. 11th Symposium on Rock Mechanics. Berkeley, 1969, pages 69-80.
131. BRAY, J.W. A study of jointed and fractured rock. Rock Mechanic8 and Engineering Ceologu. Vol.5,1967, pages 119-136 and 197-216.
132. BROWN, E.T. Strength of models of rock with intermittent joints. J. Soil Mechanic8 aná Foundatior Division. ASCE. Vol.96, No.SM6, 1970, pages 1917-1934.
133. ROSENGREN, K.J. and JAEGER, J.C. The mechanical properties of an interlocked low-porosity aggregate. Geotechnique. Vol.18, No.3, 1968, pages 317-328.
134. HOEK, E. and BROWN, E.T. Underground Excarvations in Rock. Published by the Inst. Min. Metall., London, 1980,527 pages.
135. HOEK, E. and BROWN, E.T. Empirical strength criterion for rock masses, J. Geotechnical Engineering Div., A.S.C.E., Vol. 106, No. GT9, 1980, pages 1013-1035.
136. HOEK, E. An empirical strength criterion and its use in designing slopes and tunnels in heavily jointed weathered rock. Proc. Sixth Southeast Asion Conf. On Soil Engineering, Taipei, Taiwan, Vol 2, 1980.
110. LINK. H. The sliding stability of dams. Water Power. 1969. Vol.21, No.3, pages 99-103, No.4, pages 135-139. No.5, pages 172-179.
111. SINCLAIR, S.R. and BROOKER,E.W. The shear strength of Edmonton shale. Proc. Geotechnical Conference on shear properties of natural soils and rocks. Oslo, Vol.1, 1967, pages 295-299.
112. SKEWPTON, A.W. and PETLEY, D.J. The strength along discontinuities In stiff clays. Proc. Geotechnical Conference on shear strength properties of natural soils and rocks. Oslo, Vo1.2. 1968, pages 29-46.
113. LEUSSINK, H. and HULLER-KIRCHENBAUER, H. Determination of the shear strength behaviour of sliding planes caused by geological features. Proc. Geotechnical Conference on shear strength properties of natural soils and rocks. Oslo, Vol.1, 1967, pages 131-137.
114. STIMPSON, B. and WALTON, G. Clay mylonites in English coal measures. Proc. 1 st congress Intnl. Assoc. Engineering Geology. Paris, Vol. 2, 1970. pages 13881393.
115. PIGOT,C.H. and MACKENZIE, I.D. A method used for an in situ bedrock shear test. Trans. IntnZ. Congress on Large Dams. Edinburgh. Vol.1, 1964. pages 495-512.
116. BRAWNER, C.O. Case studies of stability on mining projects. Proc. 1st Intnl. Conference on Stability in Open Pit Mining. Vancouver, 1970. Published by AIME, New York, 1971, pages 205-226.
117. NOSE, M. Rock test in situ, conventional tests on rock properties and design of Kurobegwa No. 4 Dam thereon. Trans. Intri. Congress on Large Dams. Edinburgh, Vol.1, 1964. pages 219-252.
118. EVDOKIMOV, P.D. and SAPEGIN, D. D. A large-scale field shear test on rock. Proc. 2nd Congress Intnl. Society for Rock Mechanics. Belgrade, Vol.2, 1970, Paper 3.17.

119 ORO2D, K. Variations in the shear strength of a rock mass depending upon the displacements of the test blocks. Proc. Geotechnical Conference on shear strength properties of natural soils ad rocks. Oslo, Vol.1. 1967, pages 265-269.
120. KRSMANOVIC, D., TUFO, M. and LANGDF. 2. Shear strength of rock masses and possibilities of its reproduction on models. Proc. lat. Congress Intni. Society for Rock Mechanics. Lisbon, Vol.1,1966, pages 537-542.
121. KRSMANOVIC, D. and POPOVIC. M. Large scale field tests of the shear strength of limestone. Proc.1s t. Congress Intri. Society for Rock Mechanics. Lisbon, Vol.1, 1966, pages 773-779.
122. SALAS, J.A.J. and URIEL, S. Some recent rock mechanics testing in Spain. Trans. Intnl. Congress a Large Dams. Edinburgh, Vol.1, 1964, pages 995-1021.
96. ROSS-BROWN, O.H. and WALTON, G. A portable shear box for testing rock joints. Rock Mechanics, Vol. 7, No. 3, 1975. pages 129-153.
97. BROCH, E. and FRANKLIN, J.A. The point-load strength test. Intn2. J. Rock Mechanics and Mining Sciences. Vol.9, 1972, pages 669-697.
98. BIENIAWSKI, Z.T. Estimating the strength of rock materials. J. South African Institute of Mining and Metallurgy, Vol. 74, 1974, pages 312-320.
99. BARTON, N.R and CHOUBEY, V. The shear strength of rock joints in theory and practice. Rock Mechanics, 1977, In press.
100. DEERE, D.U.. and MILLER. R.P. Engineering classification and index properties for intact rock. Technical Report No. AFNL-TR-65-116 Air Force Weapons Laboratory. New Mexico, 1966.
101. PITEAU, D.R. Geological factors significant to the stability of slopes cut in rock. Proc. Symposizom on Planning Open Pit Mines. Johannesburg. Publi shed by A.A. Balkema, Amsterdam, 1971, pages 33-53.
102. ROBERTSON, A.M. The interpretation of geological factors for use ir slope theory. Proc. Symposium on Planning Open Pit Mines. Johannesburg. Published by A.A. Balkema. Amsterdam, 1971, pages 55-70.
103. SERAFIM, J.L. Rock Mechanics considerations in the design of concrete dams. Proc. Intril. Conference on State of Stress in the Earth's Crust. Santa Monica, California. Published by Elsevier, New York, 1964, pages 611-645.
104. HAMROL, A. A quantitative classification of the weathering and weatherability of rocks. Proc. 5 th Intni. Conference on Soil Mechanics and Foundation Engineering, Paris, Vol.2, 1961, pages 771-774.
105. ROCHA, M. Mechanical behaviour of rock foundations in concretedams. Trans. 8th International Congress on Large Doms. Edinburgh. Vol.1, 1964, pages 785-831.
106. FOOKES. P.G., DEARMAN, W.R. and FRANKLIN. J.A. Some engineering aspects of rock weathering with field examples from Dartmoor and elsewhere. Quarterly J. Engineering Geology. Vol.4, 1971, pages 139-185.
107. FRANKLIN, J.A and CHANDRA, A. The Slake-durability test. Intni.J. Rock Mechanic8 and Mining Sciences. Vol 9, 1972, pages 325-341.
108. BARTON, N.R. A review of the shear strength of filled discontinuities in rock. Norwegian Geotechnical Institute Publication No. 105, 1974. 38 pages.
109. RUIZ, M.D.. CAMARGO, F.P., MIDEA,N.F. and NIEBLE, C.H. Some considerations regarding the shear strength of rock masses. Proc. Intnl. Rock Mechanics Symposium, Madrid, 1968, pages 159-169.

Chapter 5 references

82. BARTON, N.R. Review of a new shear strength criterion for rock joints. Engineering Geology, Elsevier. Vol.?, 1973. pages 287-332.
83. PAULDING, B.W.Jr. Coefficient of friction of natural rock surfaces. Proc. ASCE J. Soil Mech. Foundation Div. Vol. 96 (SM2), 1970, pages 385-394.
84. RENCERS, N. Roughness and friction properties of separation planes in rock. Thesis. Tech. Hochschule Fredericiana, Karlsruhe, Inst. Bodenmech. Felsmcch. Veröff, 47, 1971, 129 pages.
85. LANDANYI, B. and ARCHAHBAULT, G. Simulation of shear behaviour of a jointed rock mass. Proc. 11th Symposium a Rock Mechanics, published by AIME, New York, 1970, pages 105-125.
86. LADANYI, B. and ARCHAHBAULT, G. Evaluation de la resistance au cisaillwnt d'un massif rocheux fragmente. Proc. 24th International Geological Congress, Montreal, 1972. Section 130, pages 249-260.
87. FAIRHURST, C. On the validity of the Brazilian test for brittle materials. Intnl. J. Rock Mechanics ad Mining Sciences. Vol. 1, 1964, pages 535-546.
88. HDEK, E. Brittle failure of rock. Rock Mechanics in Engineering Practice. Edited by K.G.Stagg and O.C. Zienkiewicz, Published by J.Wiley, London, 1968, pages 99-124.
89. MARTIN, G.R. and MILLER, P.J. Joint strength characteristics of a weathered rock. Proc. Third Congress International Society for Rock Mechanics, Denver, Vol. 2A, 1974, pages 263-270.
90. BARTON, N.R. A relationship between joint roughness and joint shear strength. Proc. Intermational Symposivm on Rock Fracture. Nancy, France, 1971. Paper 1-8.
91. BARTON, N.R. A model study of the behaviour of excavated slopes. Ph.D. Thesis, University of London, Imperial College of Science and Technology. 1971, 520 pages.
92. SERAFIM, J.L. and LOPES, J.B. In-situ shear tests and triaxial tests on foundation rocks of concrete dams. Proc. 5th Intermational Conference on Soil Mechanics and Foundation Engineering. Paris, Vol. VI, 1961, page 533.
93. HAVERLAND, H.L. and SLEBIR, E.J. Methods of performing and interpreting in-situ shear tests. Proc. 13th Symposium on Rook Mechanics. ASCE, 1972, pages 107-137.
94. RUIZ, M. and CAMARGO, F. A large scale field test on rock. Proc. First Congress of the Intermational Society for Rock Mechanics. Lisbon, Vol. VI., 1966, page 257.
95. BRAWNER, C.D., PENTZ, D.L. and SHARP, J.C. Stability studies of a footwall slope in layered coal deposit. Proc. 13th Symposium on Rock Mechanics. ASCE, 1972, pages 329-365.

Figure 5.20 : Preservation of fragile rock core in foamed plastic as described by Stimpson, Metcalfe and Wa 1 tond58
Steps are described in the text on page 5.35
Note that rubber gloves should be worn when working with component liquids and with unset plastic foam.

Figure 5.19 : Wire-sawing a shear specimen from the sidewall of a tunnel as described by Londe ${ }^{81}$. Photograph reproduced with permission of Pierre Londe, Coyne and Bellier, France.

Figure $5.18: \begin{aligned} & \text { Wire-sawing technique for sampling rock specimens for } \\ & \\ & \text { shear testing, described by Londe }\end{aligned}$. See text for details.
maln drawback to such samples Is their size and thls maens that the Influence of surface roughness must be considered seperately. Ideally, small samples should only be used to test Infllied or planar jolnts which do not suffer from roughness - ffocts. This may not always be possibie and, when a rough jolnt is tested, the effect of surface roughness must be assessed end allowed for In the interpretation of the tort results.

In order to overcome the sliz llmitation of normal diamond drlll core, some slope stablilty englneers have used large die mond core blts (8 to 10 Inches, 200 to 250 mim) mounted on concrete coring rigs which are bolted to the rock face. Obv lously, the length of core which can be obtained using such - system is Ilmited to the length of the core barrel which can be supported by the rig and, In general, this 1 s of the order of $1-1 / 2$ to 3 ft . (0.5 to 1 m). In spite of this ilmitation, some excellent samples have been obtalned rith equlpment of this type.

Londe(81) has described the use of a wire sey for specimen recovery and this technlque is II lustrated In Flgures 5.18 and 5.19. Four holes, marked A, B, C and D In Flgure 5.16 are alliled along the top and bottom edges of the specimen. These holes are large enough to eccommodate smal l wheels whleh change the directlon of the wire. Wire cuts are made between holes A-b, B-C and C-D and then the rear face of the speclmen Is cut free by passing the wire through the slde end top cuts and cuttling between holes A and D as Illustrated In flgure 4.18. Finally, when the rear face has been cut free, the rods carrying the deflection wheels are withdram so that the base of the specimen, between holes A and D, Is cut free. While thls process moy appear complex, It has a great deal of merlt since wiro-saving I s one of the gent lest rock cutt ling processor and, $\quad 1$ th care. the specimen can be recovered rith very little disturbence.

When sampling rock cores whlch deterlorate very rapldiy on exposure, a technlque described by Stimpson, Metcalfe and Walton(158) can be used to protect the core during shipeent and to prevent loss of In situ molsture. This technique Is lliustrated In Figure 5.20 and the steps are descrlbed belows

> Step 1 - The mould, consisting of a plastic plpe spllt along its axis, is prepared to recelve the core. The core Is supported on thin metal rods hold In drilied spacers.

Step 2 - The core, wrapped In aluminium fol I, is placed on the supporting rods and the end specers are djusted to the length of the core.

Step 3 - The upper half of the mould is fired in place with adjustable steel bands end polyurethane foam Is poured through the access slot.

Step 4 - The foam sets In approximately 30 minutes after which $t h e$ mould is stripped and the rods vithdraw.

Step 5 - The core is removed Just before testing by cutting the foam with a coorso-toothed wood sam.
does little for the quallty of the results obtalned from tests on such samples. The fault seldom lles with the geologists In such cases since they are simp I y dol ng the best possi b le job with the resources avallable. The fault generally lles with those responsible for planning the investigation and with the low prlority allocated to shear strength testing.

The authors feel very strongly that poor quallty shear tests are worse than no shear tests at al I slnce the results of such tests can be extremely misleading and can give rise to ser lous errors In slope design. When the fundIng or the time avallable on a project Is Ilmited or when correct sample collectlon is Impossible for some practical reason, It Is recommended that one of the following alternative courses should be followed:
a. Hoving established the geological conditions on site as accurately as possible, the slope designer should return to his offlice and devote the time whlch he would have spent In sample collection and testing to a thorough study of publ ished papers and reports on slope stablilty In similar geological environments. It Is frequently possible to find cases which have been studied which are very similar to that under conslderation and the results presented in such studies may well provide en adequate basis for slope deslgn. When using the results of a published study, extreme care should be taken In checkling that the shear strength values were not derived from poor quallty tests. It Is also Important that a sensitivity study should be carrled out to determine the Influence of shear strength variations on the proposed slope design. If this inf luence Is signlf lcant, It may be necessary to Insist that a few high quallty shear tests be carrled out In order to narrow the range of posslble variation.
b. When hand samples are avallable, shear test samples can be prepared by dlamond saw cutting and then lappIng the surfaces with a coarse grit. This removes surface roughness effects and reduces the test to one In which the basic angle of friction ϕ is determined. This value is then used, together with surface roughness and joint compressive strength measurements, observations or estimates, to calculate the shear strength of me rock joint by means of Barton's equation (26 on page 5.7) or Ladanyl and Archambault's equation (25 on page 5.6).

When both time and money are avallable for hlgh qual Ity shear strangth testing, the slope designer has to decide upon the type of test which will give the results required. In the case of a critical slope, e.g. the abutment of a bridge, It may be Justiflable to carry out In situ tests slmilar to that li lustrated In FIgure 5.4 on page 5.10. In many cases It Is more economical and more convenlent to collect samples In the fleld for subsequent testing In the laboratory.

The obvious source of samples for shear strength testing is the collectlon of diamond drill cores which usually are avaliable on project sites. Provided that these cores have been obtalned by careful drililing, using double or triplo-tube equipment, and provided that the core size Is In excess of about 2 inches (50 $\mathrm{mm})$, reasonable samples can be obtalned from these cores. The

SOURCE OF SHEAR STRENGTH DATA PLOTTED IN FIGURE 5.17					
oint wnber	Material	Location	Slope height feet	Analysed by	Ref.
1	Disturbed slates and quartzites	Knob Lake, Canada		Coates, Gyenge and Stubbins	144
2	Soil			Whitman and Bailey	145
3	Jointed porphyry	Rio Tinto, Spain	150-360	Hoek	146
4	Ore body hanging wall in granitic rocks	Grangesberg, Sweden	200-800	Hock	147
5	Maximum height and an	angle of excavated slopes -	ee Figur	2.1 on page 2.3.	
6	Bedding planes in limestone	Somerset, England	200	Roberts and Hoek	148
7	London clay	England		Skempton and Hutchinson	149
8	Gravelly alluvium	Pima, Arizona		Hamel	150
9	Faulted rhyol i te	Ruth, Nevada		Hamel	151
10	Sedimentary series	Pittsburgh, Pennsylvania		Hame 1	152
11	Koal inised granite	Cornwall, England	250	Ley	153
12	Clay shale	Fort Peck Dam, Montana		Middlebrooks	154
13	Clay shale	Gardiner Dam, Canada		Fleming, et al	155
14	Chalk	Chalk cliffs, England	50	Hutchinson	156
15	Bentonite/clay	Oahe Dam, South Dakota		Fleming, et a l	155
16	Clay	Garrison Dam, North Dakota		Fleming, et al	155
17	Weathered granites	Hong Kong	40-100	Hoek and Richards	157
18	Weathered volcanics	Hong Kong	100-300	Hoek and Richards	157
19	Folded sandstone, siltstone	Alberta, Canada	800	Wyllie and Munn	158A

Sample collection and preparation
Before leaving the subject of shear strength, the authors feel that some comments must be made on the question of sample collection and preparation for laboratory testing. From the discussion in this chapter it will be clear that samples for laboratory shear testing should be disturbed as little as possible during collection. The importance of the strength of the joint surface material has been emphasized and it is Important that this material be retained on the joints to be tested. When the joints are infil led with clay or gouge materials, it is essential that this material should not be disturbed and that the two halves of the specimen should not be displaced relative to one another. When the materials to be tested are sensitive to changes in moisture content, the specimens must be sealed after collection in order to retain the in situ moisture content.

Because of difficulties of access, most samples for shear testing are collected by geologists whose only equipment conslsts of a geological pick and a backpack. While this may do a great deal to enhance the rugged pioneering spirit of geologists, it

Figure 5.17 : Relationship between the friction angles and cohesive strengths mobilised at failure for the slope failure analyses listed in Table IV.

The simplest type of rock slope tailure on which a back-analysis can be carried out is one in which strong structural control is evident. Examples of such failures are given in Figure 1.1 on page 1.3 and Figure 2.8 on page 2.4 .

When the plane or planes upon which sllding has occurred are clearly defined and exposed, the dip and dip directions of these planes can be measured with a high degree of accuracy and an analysis can be carrled out by means of one of the techniques outlined later In this book. The most significant unknown In these cases Is usually the water pressure distribution In the slope at the time of fal lure. If thls cannot be estlmated from avallable data, upper and lower bound estimates of groundwater cond l tions can be made and a possl b le range of shear strength values determined by back-analysis. A good example of thls type of analysis is given In the study of a limestone quarry slope fal lure presented on pages 7.25 to 7.30 of thls book.

Another simple form of slope failure which can be back-analyzed Is that In which the fal lure surface is approximately circular and It can be assumed that there are no dominant structural features Involved In the failure process. In this case, measurement of the fal lure surface geometry by simple survey technlques together with a knowledge of the slope proflle before fallure wll provide the basic Information required for a back-analysts using one of the standard forms of analysis described In Chapter 9.

In carrying out a back-analysis of sliding on a plane or planes or on an epproximately circular fallure surface, the equations defining the condition of llmiting equilibrium can only be solved If It Is assumed that the shear strength of the fal I ure surface or surfaces Is represented by a simple Mohr-Coulomb fallure criterlon (equation 10 on page 5.2). Even rhen this assumption Is made, It Is not possible to determine the values for both material constants, the coheslvestrength c and the angle of friction \varnothing, from the back-analysis of a single slope fal lure. In order to define both materlal constants It Is necessary to back-analyze several failures In the some materlal or to determine cne of the constants, usually the frlctlon angle, by sane other means such as direct shear testing In the laboratory.

As pointed out earller In thls chapter, many rough discontinulty surfaces or shear zones In closely jolnted rock masses exhiblt strongly non-l near Mohr envelopes. The determination of the materlal constants c and \varnothing by means of back-analysls of slope fal lures is equlvalent to determining a tangent to a curved Mohr envelope. Thls tangent will only glve an accurate assessment of the shear strength of the fal lure surface or zone at the normal stress level which existed durlng fal lure of the slopes back-analyzed. Consequently, care must be taken when applyling the results obtalned from the back-analysis of a partlcular slope to the des!gn of a slope of different dimensions In which the normal stress levels may be different.

Figure 5.17 Is a plot of cohesive strengths and friction angles obtalned by back-analysis of the slopes llsted In the accompanylng table. Thls flgure has been found to provide a useful starting point for stablility analysis or a check on the reasonableness of assumed shear strength data. The reader Is encouraged to add hls or her own points on this plot.

Figure 5.16: Hohr failure circles and fitted Mohr envelope for triaxial tests on recompacted graded samples of closely jointed andesi te from Bougainvi I le. Dashed Mohr envelope is for tests by Jaeger on undisturbed cores of the same material (from Figure 5.15).
which gives the lowest factor of safety. This means that It may be necessary to determine the strength character istics of the individual discontinulty surfaces as well as that of the overall rock mass.

Shear strength determination by back analysts of slope fallures

By this time the reader should have been convinced that the doterminatlon of the shear strength of rock surfaces or of closely jointed rock masses is not a simple matter. Even when successful tests havr been carrlod out, the slope designer ls stll I faced with the task of relating these test results to the full scale design.

In view of these difficulties, it Is tempting to consider the possibllity of back analyzing exlsting slope fallures In order to determine the shear strength which must have been mob III zed In the ful l scale rock mass at the time of fal lure. This technlque has been used successfully In sollmechanlcs for many decades and has contributed slgnificantly to the contidence with which soll slopes can be designed. WI th care, the same technlque can be used to obtaln useful data for rock slope design.
that all the individual pieces within the chosen sample volume are collected. A grading curve for the sample ls obtalned by running the materlal through a set of sieves and welghing the amount retalned on each sleve. The maximum particle size which should be Included In the test specimen Is about one sixteenth of the diameter of the specimen and, If the grading curve of the field sample glves larger slzes than this, the grading curve should be scaled down. Thls ls done by removing all particles larger than the permitted slze and by adjusting the amount retalned on each of the smal ler sleve slzes until the grading curve Is parallel to that of the original sunple. Very fine materlal (less than 200 mesh U.S. standard sieve slze) Is removed from the sample since thls could enter volds between the larger particles and give rlse to strength characterlstics slmllar to those of fllled joints. The sunple Is then compacted by placing It In layers Into a confining sleeve and subjecting It to vibration and/or direct axlal load. If a significant axlal load has to be used In order achleve a unlt welght equivalent to the In sltu unlt welght, some partic le breakage will probably occur and the grading curve for the compacted materlal should be checked. The specimens are now ready for tr laxlal testing which would normally be carrled out In a drained conditlon, In other words, any water pressure which could bulld up In the specimen is allowed to disslpate by loading at a sufficlently slow rate and by providing dralnage In the loading plattens.

Flgure 5.16 gives a set of results obtalned for such a serles of tests whlch were carrled out on 6 Inch (153 mm) diameter specimens of recompacted graded andeslte from Bougalnville. The dashed curve Included In thls flgure has been transferred from Figure 5.15 and represents the Mohr fallure envelope for the undisturbed cores of the same materlal tested by Jaeger. The authors conslder the two Mohr envelopes glven In this figure to represent the upper and lower bounds for the shear strength of the closely jointed andesite In situ.

Note that test resu I ts such as those presented In Figures 5.15 and 5.16 should only be used for slope design purposes when the user Is convinced that the fallure mechanlsm In the sample Is representative of that which Is Ilkely to occur in the rock mass In which the slope Is to be excavated. In the case of closely jolnted rock masses, thls generally means that the failure would Involve some form of klnk band formation, such as that Illustrated In the lower margin photograph on page 5.22, and that slope fallure would occur along an approximately circular failure path simllar to that which occurs In waste rock tills or soll slopes. If It Is suspected that faults or dominant bedding planes or jolnts could control the slope fal lure, then this type of testing Is Inapproprlate and the results could be misieading If used for slope des! gn. In such cases, the shear strength characterlstlcs of the individual planes of weakness should be determined, as discussed earl ler In thls chapter, and the slope design should be based upon a mechanism which recognires the potential for fallure along these planes rather than along a path of least resistance through the rock mass.

In cases In rhlch the failure mechanlsm which could occur In a slope Is not obvlous, the only safe approach to follow ls to analyze all those fallure modes which are klnematically posslble and to base the deslgn of the slope upon that analysls

Figure 5.15: tlohr envelope for triaxial tests on heavily Jointed - ndosi te tested by Jaeger ${ }^{142}$.

Triaxial test results obtained by Jaeger ${ }^{142}$ on closely jointed andeoite fromBougainville.

Anial failure	Cmfining
stress σ_{1} MPa	pressure 0_{3} Mpa
2.24	0
6.07	0.35
8.96	0.69
12.07	1.24
12.82	1.38
19.31	3.45
20.00	3.45

Large triaxial cet 2 for rockfill testing in the Zaboratory of the Snoury Mountains Authority in Australia.

In the Inner core tubes to Jaeger's laboratory In Canberra. In the laboratory, the core tubes were cut careful ly along two diametrically opposite axlallines so that one half of the tube could be llfted off, leaving the undisturbed core resting in the remalning half of the core tube. The core was then wrapped In thin copper sheeting and carefully rolled over to transfer the core from the core tube Into the copper sheet which was then soldered to form a sealed sleeve. The specimen ends were prepared by careful dlamond sowing through the copper sheathed core.

Cores, prepared In the manner descr lbed, were tested In a tr Iaxlal cell such as that lllustrated diagrammatically In the margi n sketch on page 5.24. The results obtalned by Jaeger, for confinlng pressures of up to 3.5 MPa , are listed In the margIn and are plotted In Flgures 5.14 and 5.15.

Regression analysis of these data, using the analysis presented In Appendlx 1, glves the fol lowing values for the constants required to solve equations 29 and 30 :

$$
\begin{aligned}
\sigma_{C} & =265.5 \mathrm{MPa} \\
\mathrm{~m} & =0.277 \\
\mathrm{~s} & =0.0002 \\
\mathrm{~A} & =0.316 \\
\mathrm{~B} & =0.700 \\
\mathrm{~T} & =-0.00072
\end{aligned}
$$

Substltution of these values Into equations 29 and 30 define the curves plotted In Figure 5.14 and 5.15. The correlation coefficlent of 0.99 glven by the regression analysis is reflected In the close fit of the empirical curves to the test data.

Many civil engineering laboratories have large triaxial cells designed for testing rock fill for dams and some of these cells are suitable for tests similar to those carried out by Jaeger. One such cell was used by the Snowy Mountains Authority and is illustrated in the margin photograph. Marsal(137) has described the design of a very large cell to accommodate 1130 mm diameter by 2500 mm high specimens. These large cells are very expensive to manufacture and to operate and most laboratories use smaller cells designed to accommodate 153 mm (6 inch) diamoter cylindrical samples. Testing procedures should follow the guidelines set out by Bishop and Henkel(143) for the triaxial testing of soils.

The recovery of undlsturbed samples of closely jointed rock is a very difficult process and, In many cases, may not be possible because of the lack of adequate fac lilt les. Under such circumstances, the authors feel that a reasonable al ternatlve Is to approach the problem as one wou I d that of test Ing compacted rock flll. The procedure for testing rock flll has been descrlbed by Marsal(137) and by Marachl, Chan and Seed(138) and Is outlined briefly in the following notes.

A representative sample of the materlalis collected from an exposure of the rock mass. No attempt Is made to prevent the particles from falling apart but care should be taken to ensure

[^1]| TABLE IV - APPROXIHATE RELATIONSHIP BETWEEN ROCK MASS QUALITV ANO EMPIRICAL CONSTANTS • | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Empirical failure oriterion $\begin{aligned} & \sigma_{1}=\sigma_{3}+\sqrt{m \sigma_{c} \sigma_{3}+s \sigma_{c}^{2}} \\ & \tau=A \sigma_{c}\left(\sigma / \sigma_{c}-T\right) B \\ & \text { where } T=\frac{1}{2}\left(m-\sqrt{m^{2}+4 s}\right) \end{aligned}$ | | | | | |
| INTACT ROCK SAMPLES
 Laboratory sise specimens free from joints
 CSIR rating 100
 NGI rating 500 | $\begin{aligned} m & =7.0 \\ s & =1.0 \\ A & =0.816 \\ B & =0.658 \\ T & =-0.140 \end{aligned}$ | $\begin{aligned} & m=10.0 \\ & s=1.0 \\ & A=0.918 \\ & B=0.677 \\ & T=-0.099 \end{aligned}$ | $\begin{aligned} & m=15.0 \\ & s=1.0 \\ & A=1.044 \\ & B=0.692 \\ & T=-0.067 \end{aligned}$ | $\begin{aligned} & m=17.0 \\ & s=1.0 \\ & A=1.086 \\ & B=0.696 \\ & T=-0.059 \end{aligned}$ | $\begin{aligned} m & =25.0 \\ s & =1.0 \\ A & =1.220 \\ B & =0.705 \\ T & =-0.040 \end{aligned}$ |
| VERY GOOD QUALITY ROCK MASS Tightly interlooking undistwirbjedi mook awi ± 3 m .onseatherCSIR rating 85 NGIrating 100 | $\begin{aligned} & m=3.5 \\ & s=0.1 \\ & A=0651 \\ & B=0.679 \\ & T=-0.028 \end{aligned}$ | $\begin{aligned} & m=5.0 \\ & s=0.1 \\ & A=0.739 \\ & B=0.692 \\ & T=-0.020 \end{aligned}$ | $\begin{aligned} m & =7.5 \\ s & =0.1 \\ A & =0.848 \\ B & =0.702 \\ T & =-0.013 \end{aligned}$ | $\begin{aligned} m & =8.5 \\ s & =0.1 \\ A & =0.883 \\ B & =0.705 \\ T & =-0.012 \end{aligned}$ | $\begin{aligned} m & =12.5 \\ s & =0.1 \\ A & =0.998 \\ B & =0.712 \\ T & =-0.008 \end{aligned}$ |
| GOOD QUALITY ROCK MASS
 Fresh to siightly weathsred with joints ${ }^{-7 t h y}$ diatukin. ${ }^{\text {ad }}$
 CSIR rating 65
 NGIrating 10 | $\begin{aligned} & m=0.7 \\ & s=0.004 \\ & A=0.369 \\ & B=0.669 \\ & T=-0.006 \end{aligned}$ | $\begin{aligned} m & =1.0 \\ s & =0.004 \\ A & =0.427 \\ B & =0.683 \\ T & =-0.004 \end{aligned}$ | $\begin{aligned} & m=1.5 \\ & s=0.004 \\ & A=0.501 \\ & B=0.695 \\ & T=-0.003 \end{aligned}$ | $\begin{aligned} & m=1.7 \\ & s=0.004 \\ & A=0.525 \\ & B=0.698 \\ & T=-0.002 \end{aligned}$ | $\begin{aligned} & m=2.5 \\ & s=0.004 \\ & A=0.603 \\ & B=0.707 \\ & T=-0.002 \end{aligned}$ |
| FAIR QUALITV ROCK MASS
 Several sets of moderately weastltorim. joints spaced at CSIR rating 44
 NGI rating 1.0 | $\begin{aligned} & m=0.14 \\ & s=0.0001 \\ & A=0.198 \\ & B=0.662 \\ & T=-0.0007 \end{aligned}$ | $\begin{aligned} & m=0.20 \\ & s=0.0001 \\ & A=0.234 \\ & B=0.675 \\ & T=-0.0005 \end{aligned}$ | $\begin{aligned} & m=0.30 \\ & s=0.0001 \\ & A=0.280 \\ & B=0.688 \\ & T=-0.0003 \end{aligned}$ | $\begin{aligned} & m=0.34 \\ & s=0.0001 \\ & A=0.295 \\ & B=0.691 \\ & T=-0.0003 \end{aligned}$ | $\begin{aligned} & m=0.50 \\ & s=0.0001 \\ & A=0.346 \\ & B=0.700 \\ & T=-0.0002 \end{aligned}$ |
| POOR QUALITY ROCK MASS
 Mremerous weathered joints gouge to cfean with wasterk. CSIR rating 23 NGI rating 0.1 | $\begin{aligned} & m=0.04 \\ & s=0.00001 \\ & A=0.115 \\ & B=0.646 \\ & T=-0.0002 \end{aligned}$ | $\begin{aligned} & m=0.05 \\ & s=0.00001 \\ & A=0.129 \\ & B=0.655 \\ & T=-0.0002 \end{aligned}$ | $\begin{aligned} & m=0.08 \\ & s=0.00001 \\ & A=0.162 \\ & B=0.672 \\ & T=-0.0001 \end{aligned}$ | $\begin{aligned} & m=0.09 \\ & s=0.00001 \\ & A=0.172 \\ & B=0.676 \\ & T=-0.0001 \end{aligned}$ | $\begin{aligned} & m=0.13 \\ & s=0.00001 \\ & A=0.203 \\ & B=0.686 \\ & T=-0.0001 \end{aligned}$ |
| VERY POOR QUALITY ROCK MASS Shenerow hoavily seathered joints spaced < 50 mm with gouge - waste with fines. CSIR rating 3
 NGI rating Ø.ø1 | $\begin{aligned} & m=0.007 \\ & s=0 \\ & A=0.042 \\ & B=0.534 \\ & T=0 \end{aligned}$ | $\begin{aligned} & m=0.010 \\ & s=0 \\ & A=0.050 \\ & B=0.539 \\ & T=0 \end{aligned}$ | $\begin{aligned} & m=0.015 \\ & s=0 \\ & A=0.061 \\ & B=0.546 \\ & T=0 \end{aligned}$ | $\begin{aligned} & \mathrm{m}=0.017 \\ & \mathrm{~s}=0 \\ & \mathrm{~A}=0.065 \\ & \mathrm{~B}=0.548 \\ & \mathrm{~T}=0 \end{aligned}$ | $\begin{aligned} & m=0.025 \\ & s=0 \\ & A=0.078 \\ & B=0.556 \\ & T=0 \end{aligned}$ |

${ }^{*}$ Note: The CSIR and NGImethods of classifying rock masses are described in Appendix 9.

The corresponding relatlonship between shear strength \mathcal{Z} and the normal stress σ of failure Is:

$$
\begin{equation*}
\tau=A \sigma_{c}\left(\sigma / \sigma_{c}-\tau\right)^{B} \tag{30}
\end{equation*}
$$

where A and B are constants def In Ing the shape of the Mohr fal lure envelope and

$$
T=\frac{1}{2}\left(m-\sqrt{m^{2}+4 s}\right)
$$

Hoek and Brown have assumed that the effect lve stress 1 aw (see page 2.8) applies to thls faliure criterion and that effective stresses may be calculated as follows:

$$
\begin{aligned}
& \sigma_{1}^{\prime}=\left(\sigma_{1}-u\right) \\
& \sigma_{s}^{\prime}=\left(\sigma_{s}-u\right) \\
& \sigma^{\prime}=(\sigma-u)
\end{aligned}
$$

These effective stress values may be substluted directly Into equations 29 and 30 when the pore water pressure \mathcal{U} Is known.

A regression analysis for the determination of the constants m, s, A and B from the results of laboratory trlaxlal tests on closely jolnted rock Is presented In Appendlx 1 at the end of thls book.

When laboratory test data are not aval lab I e or when It Is required to estimate the strength of a large rock mass, Hoek and Brown have proposed that the rock mass classlf icatlons of Barton, et al(140) and Blenlawskl(141) be used to scale the values of the constants m, s, A and B. A full discussion on this scalling Is glven In the textbook by Hoek and Brown(134) and the proposed relatlonshlp between rock type and rock mass qual ity and the values of the constants has been summar I zed In Table IV on page 5.26.

An example of the appllcation of Hoek and Brown's empirical failure criterlon ls discussed In the next section of thls chapter and the appllcation of thls fallure crlterlon In the analysis of circular fallure in closely jolnted rock slopes is discussed In Chapter 9.

Testing closely jolnted rock
The determination of the strength of a closely jolnted rock mass presents formidab le exper lmental problems and rel at I ve I y few attempts have been made to carry out direct shear or tr liaxlal tests on these materlals.

Jaeger (142) has descrlbed one of the most elaborate tests ever attempted on closely jolnted rock and his paper Is recommended reading for anyone faced with this problem. The rock mass tested by Jaeger was an andesite fran the site of the open pltmine on Bougalnville In Papua New Gulnea. This hard rock Is divided up by several sets of joints spaced at about one Inch apart. The joints are free from inflilling but are slightly veathered as a result of high water flows.

Slx Inch (153 mm) dlameter cores were recovered by very careful triple-tube diamond drlil Ing and these cores were transported

Figure 5.13 : Shear strength curves for three types of failure in closely jointed interlocking rock masses. Plotted for $i=20^{\circ}$ and $\Phi=30^{\circ}$.

Whi le Ladanyi and Archambaul t's approach is attractive because it involves a consideration of the mechanics of block movement and failure within a rock mass, it is difficult to apply in practice because the choice of the various parameters (η, n, σ_{C}, K, L, ϕ and \dot{f}) which are required to solve the equations. In fact, one general ly has to guess most of these parameters in order to arrive at a solution.

In recognitlon of the problem of adequately defining the geometrical and materlal property parameters required In a mechanIstlc approach such as that adopted by Ladanyl and Archsmbault, Hoek and $\operatorname{Brown}(134,135,136)$ have proposed a very simple emplrical fallure crlterlon for closely jointed rock masses.

The basic emplricalequation relating the axlalfallure stress σ_{l} to the confining pressure σ_{3}, In a trlaxial test such as that Illustrated In the marginsketch, Is:

$$
\begin{equation*}
\sigma_{1}=\sigma_{3}+\sqrt{m \sigma_{c} \sigma_{3}+s \sigma_{c}^{2}} \tag{29}
\end{equation*}
$$

where $\quad \sigma_{C}$ is the unlaxlal compressive strength of the intact rock pleces, and
m and s are dimensionless constants which depend upon the shape and degree of interlocking of the individual pleces of rock within the mass.
Triaxial testing of gramilar materials.
where

$$
\begin{aligned}
& \dot{v}=\left(1-\frac{\sigma}{\sigma_{c}}\right)^{k} \operatorname{Tan} i \\
& a_{s}=\left(1-\left(1-\frac{\sigma}{\sigma_{c}}\right)^{2}\right.
\end{aligned}
$$

(28a)
(28b)
and σ_{c} Is the uniaxial compressive strength of the individual blocks within the rock mass,

7 Is the degree of Interlocking which defines the freedom of the blocks to translate and to rotate before belng sheared or fractured*.

The suggested values for K, L and η for the three types of failure are as follows:
$\begin{aligned} & \text { Case } 1 \text { - } \text { shear plane formation, } K=4 \text { and } L=1.5 \text { as for } \\ &\text { single rough olscontlnulty surfaces (page } 5.7) ~ \\ & \text { with } \eta=0.7 \text { to al low for loosening of the rock }\end{aligned}$ mass as a result of close jolnting.

Case 2 - shear zone formation, K = 5 to al low for Increased freedom of block to rotate, $L=\operatorname{Tan} i$ and $\eta=0.6$ which allows for a looser rock mass than in case 1.

Case 3 - kInk band formation, $K=5$ as for case 2 and $L=$ $\left(2 / n_{\mu}\right)^{3}$ Tan i where n_{μ} Is the number of rows of blocks In the kink band which Is normal ly 3 to 5. In thls case $\eta=0.5$ to al low for the very loose condition of the rock mass.

Flgure 5.13 glves a set of shear strength curves, calculated by means of equations 28, 28a and b using $\varnothing=30^{\circ}, t=20^{\circ}$ and, for case $3, n_{r}=4 \ln$ addition to the values suggested above. For comparison, the shear strengths for Intact rock and for fat lure on a single rough discontinulty and the residual strength of a smooth plane are shown as dashed curves. These curves are reproduced from Flgure 5.1 assuming $\sigma_{j}=\sigma_{C}$.

The curve for case 1, the formation of a single shear plane, colncldes with that for a rough joint at very low normal stresses when the behavlor is strongly dilatant. As the normal stress Increases, the curve for the rock mass fal ls below that for the Intact rock as a result of the weakening et fect of the close Jolnting. Rosengren and Jeeger (133) noted thl s type of behavlour on tests on marble which had been heated to break the grain boundary mater lal, resulting In a very tightly interlockIng model rock mass. In splte of the fact that the grains were stlliln thelr original positions, the fact that the tensile strength of the grain boundarles has been reduced to zero gave r ise to a strength reduction of about 20% at hlgh normal stresses.

[^2]

Shear plane

Shear zone

Kink band

Shear strength of closely jolnted rock masses
When a hard rock mass contalns a number of Jolnt sets and when the jolnt spacing ls very close, In relatlon to the slze of slope belng consldered, the behavlor of the rock mass may differ signlflcantly from that of the single discontlnulty surface consldered In the first part of thls chapter. The loosened state of the rock mass, resulting from the close Jolnting, permits individual blocks within the mass to translate and to rotate to a far greater degree than can occur In more Intact rock and thls gives rlse to an overall strength reduction.

The determinatlon of the shear strength of closely jolnted rock masses has long been recognl zed as an Important engineer Ing problem and a number of excel lent papers have been publ ished on thls subject($85,86,129-136$). Closely related research has also been carried out on the shear strength characterlstics of rock flll(137-139) and many similarities can be found between the results of thls work and that on closely jolnted rock. It would not be practical to attempt a detal led revlem of al lof this work In thls book and the discussion which fol lows will be Ilmited to the relationshlp proposed by Ladanyl and Archambault(85,86) and the empirlcal equation published recently by Hoek and $\operatorname{Brown}(134,135)$ and $\operatorname{Hoek}(136)$.

Ladanyl and Archambau It carr led out a large number of model studies using small blocks of commerclally compressed concrete. Each model contalned 1800 blocks measurlng $1 / 2^{n} \times 1 / 2^{n} \times 2.5^{n}$ packed tlghtly together to form a $2.5^{\prime \prime}$ thlck model slab. Blaxlal loads were applled In the plane of the model slab, the loading direction being varled In relationshlp to the "joint" orlentation.

Three distinct types of fal lure occurred and these are IIIustrated In the photographs reproduced In the margin.

Case 1 - Shear along a well defined plane Incllned to both discontlnulty sets.
Case 2 - Formation of a narrow fallure zone In which block rotation has occurred In addition to the silding and materlal fallure of Case 1.
Case 3 - Formatlon of a kInk band of rotated and separated columns of 3, 4 or 5 blocks.

On the basis of these model studles, Ladanyl and Archambault proposed modl f led forms of equations 22, 23 and 24 (pages 5.6 and 5.7) which could be used In equation 21 to predict the shear strength of closely Jolnted rock masses. After very careful conslderation of these modiflcatlons and after discussion with Ladanyl, the authors have Introduced a further silght modIflcation which removes an anomaly whlch can occur when using Ladanyl and Archembault's equations. The final equations resulting from these discussions and modifications are as follows:

$$
\begin{equation*}
\tau=\frac{\sigma\left(1-a_{s}\right)(\dot{v}+\operatorname{Tan} \phi)+a_{s} \eta \sigma_{c} \frac{\sqrt{1+n}-1}{n}\left(1+n \frac{\sigma}{\eta \sigma_{c}}\right)^{\frac{1}{2}}}{1-\left(1-a_{s}\right) \dot{v} \operatorname{Tan} \phi} \tag{28}
\end{equation*}
$$

TABLE III - SHEAR STRENGTH OF FILLED DISCONTINUITIES

Figure 5.12: Influence of joint filling thickness on the shear strength of an idealised saw-tooth joint. After Goodman ${ }^{9} 9$.
carrled out in accordance with well established sol I mechanlcs principles.

Another major factor which must be consldered In relation to fll led joints is the Influence which they have on the permeabllity of the rock mass. The permeablilty of clay gouge and slmilar Jolnt fl II Ing materlal may be three or four orders of magnltude lower than that of the surrounding rock mass and thls can glve rlse to dammlng of ground water Into compartments within the rock mass. When water pressure is al lowed to bul Id up behind a clay-flled discontinulty such as a fault, the overal I stablilty of the slope can be Jeopard I zed and me situation Is made worse by the fact that thls fllling materlal has a very low shear strength and that fallure of the slope may be initlated along this discontinulty.

From thls discussion It wll be clear that an extremely Important aspect of a slte Investlgation program for a rock slope design ls the detectlon of major discontinultles whlch are flled with clay or other fllling materlals. If the presence of such discontlnultes is suspected, a speclal effort should be made during the site Investigation program to check whether they do exlst. This may Involve the drl liling of holes In critical locatlons as well as the careful tracing of outcrops and Intersectlons with any exlsting excavations. Determination of the orlentation and inclination of such discontinulties for subsequent Inclusion In stabllity analyses Is Important as is the sampling of the flliling matorlal for shear strength testIng.

The roughness angle i which is required for an evaluation of Ladanyl and Archambault's equation can be obtalned from measurements such as those descr 1 bed in F Igure 4.4 on pages 4 . 9 and 4.10. Care should be taken to ensure that the scale of measurement Is approprlate to the scale of the problem. In very large slopes features such as folds In the bodding planes may contrloute to the effective roughness of the potential sllding surface. The average z value for such surfaces can be measured off photographs, as was done by Patton(40), or by measuring the dips, with a geologlcal compass, along a llne marked on the plane. Thls line should be In the direction of potentlal sllding and should be long enough to ensure that several roughness "wavelengths" are Included In the measurement.

Barton's Jolnt Roughness Coefficlent (JRC) Is only approximately related to the roughness angle ℓ and he suggests(82) that the value of JRC should be estimated by simple visual comparison with Figure 5.2. Note that two scales are glven In this figure and that the user would use the scale most approprlate to the problem which he is considering.

Shear strength of fllled discontInultler

Up to thls polnt the discussion has been restrlcted to the shear strength of surfaces \ln which rock-t-rock contact occurs along the entire length of the surface. A conmon problem which Is encountered In rock slope design Is a discontlnulty which Is flled with sane form of soft materlal. Thls filling may be detrital materlal or gouge from prevlous shear movements, typical In faults, or It may be material which has been deposited In open Joints as a result of the movement of water through the rock mass. In elther case, the presence of a signl ficant thlckness of soft, weak fll ling materlal can have a major Influence on the stabl l lty of the rock mass.

Goodman(39) demonstrated the Importance of jolnt fl II Ings In a serles of tests In which artificlally created sawtooth jolnt surfaces were coated with crushed mlca. The decrease In shear strength with Increasing tilling thlckness is II lustrated In Figure 5.12 which shows that, once the flliling thickness exceeds the amplitude of the surface projections, the strength of the joint is control led by the strength of the fl I I Ing materlal.

A very comprehensive revien of the shear strength of filled discontInultles has been prepared by Barton(108) and thls paper Is highly r-ended to any reader who wishes to study this subject In greater detal I. A I Ist of shear strength values for fllled Jolnts, based upon one complled by Barton, Is glven In Table III.

When a major discontinulty with a slgnificant thickness of fliling Is encountered In a rock mass in which a slope is to be excavated, It Is prudent to assume that shear fal lure willoccur through the fllling matorlal. Consequently, at least for the prollminary analysis, the Influence of surface roughness should be lgnored and the shear strength of the discontInulty should be taken as that for the fllling materlal. Doterminatlon of the shear strength of this filling material should be

Variation of compressive strength with degree of alteration for a granite. After Serafimd 03 .

Appraximate values for the basic friction angle \dagger for different rocks. Rock	
Amphibolite	$\mathbf{3 2}$
Basalt	$\mathbf{3 1 - 3 6}$
Conglomorate	$\mathbf{3 5}$
Chalk	$\mathbf{3 0}$
Dolomite	$\mathbf{2 7 - 3 1}$
Cneiss (schistose)	$\mathbf{2 3 - 2 9}$
Granite (fine grain)	$29-\mathbf{3 5}$
Granite (coarse grain)	$31-35$
Limestone	$\mathbf{3 3 - 4 0}$
Porphyry	$\mathbf{3 1}$
Sandstone	$\mathbf{2 5 - 3 5}$
Shale	$\mathbf{2 7}$
Siltstone	$\mathbf{2 7 - 3 1}$
Slate	$\mathbf{2 5 - 3 0}$

Lower value is generally given by testson wet rook surfaces.
After Barton ${ }^{82}$.

A final question whlch must be considered when estlmating the compressive strength of the material adjacent to the dlscont Inulty surface relates to the weathering or alteration of the materlal. This questlon has been discussed by Barton(82) who suggests that weatherling can reduce the strength of the near surface materlal to as low as one quarter of the unlax 1 a 1 compressive strength of the Intact unweathered material. Thls process wII I vary eccording to the rock type sl nce very dense and impervious rocks such as basalt would gradually ecquire a thln skin of weatherad materlal, granltes would weather more deep I y and, porous rock such as sandstone cou Id weather more or less unlformly to conslderable depth.

The graph reproduced In the margin Is from Soraflm(103) and shows the significant strength reduction with Increasing alteration. The alteration Index, described by Hemrol(104), Is the welght of water absorbed by the rock In a quick ebsorption test, divided by the dry wolght of rock, expressed as a percentage. Rocha(105) has also shown the rapld fall in shear strength of rock which ls assoclated with the first fam per cent Increase In alteration Index. Useful discussions on weotherling have also been given by Fookes, Dearmen and Frank|ln(106) and Frank|in and Chandra (107).

Because of the wide range of conditions whlch can be encountered in the fleld, the authors have not attempted to give specific guldelines on the allowance wich should be made for weathering when consldering the uniaxial compressive strength of rock In order to determine the jolnt wall compressive strength σ_{j}. The reader should be aware of thl s problem and should give consideration to the allowance which he should make under each partlcular set of circunstances.

Turning to the question of the basic friction angle $\boldsymbol{\phi}$ for use in Ladanyi and Archambault's and in Barton's equations, ideally, this quantity should be determined by direct shear testing on Smooth rock surfaces which have been prepared by means of a clean, smooth d iamond saw cut. Alternatively, residual shear strength values, obtained from shear tests in which the specimen has been subjected to considerable displacement, can be used to obtain the value of ϕ. Note that either of these tests should be carried out over a range of normal stress levels to ensure that a I Inear relationship between shear strength and normal stress with zero cohesion is obtained. This precaution is necessary because the shear strength at very low normal stresses can be influenced by extremely small surface roughness on the specimen. Tilting tests, in which the angle of inclination of the specimen required to cause sliding is measured, are not reliable for the determination of the basic friction angle because of the influence of very small scale Surface roughness.

If a shear test is carried out on a fleld sample with rough surfaces, me surface prof I le can. be measured, before testing, and the average roughness angle z subtracted from the angle of Incl ination of the line relating shear strength to normal stress. Thls correct lon should only be used when the shear test results fall reasonably close to a stralght ilne which passes through the orlgin.

When no test results are avallable, the tabulation given In the margin can be used to obtaln an estlmate of the baslc angle of frlction.

Abstract

When the slope designer finds himself In a sltuation where no facllitles at all are avallable, for example on a proposed hlghway durlng the earllest route locatlon studles, he has to resort to a method of determining the compressive strength of the rock by a method which Is best termed "klcking the rock". In order to asslst such an adventurer, a very approximate set of guldellnes have been tabulated below, based upon papers by Deere and Mllier(100), Plteau(101), Robertson(102) and upon consulting experlence. Cohesive solls have been Included In thls table since these are Important as Jolnt fl I I Ing materlals, to be discussed In the next section.

TABLE II -APPROXIMATE CLASSIFICATION OF COHESIVE SOIL ANO ROCK

Vo.	Description	$\operatorname{miaxial}_{2 b / i n^{2}}$	pressive $\mathrm{kg} / \mathrm{cm}^{2}$	$\begin{gathered} \text { trength } \\ M P Q \end{gathered}$	Exconples
51	VERY SOFT SOIL = easily mouldcd with fingers, shows distinct heel marks.	<5	<0.4	co. 04	
52	SOFT SOIL - moulds with strong pressure from fingers, shows faint heel marks.	5-10	0.4-0.8	0.04-0.08	
53	FIRM SOIL - very difficult to mould with fingers, indented with finger nail, difficult to cut with hand spade.	10-20	0.8-1.5	0.08-0.15	
54	STIFF SOIL - cannot be moulded with fingers, cannot be cut with hand spade, requires hand picking for excavation.	20-80	1.5-6.0	0.15-0.60	
55	VERY STIFF SOIL = very tough , difficult to move with hand pick. pneumatic spade required for excavation.	80-150	6-10	0.6-1 . 0	
RI	VERY WEAK ROCK - crumbles under sharp blows with geological pick point, can be cut with pocket knife.	150-3500	10-250	1-25	Chalk, rocksalt
R2	MODERATELY WEAK ROCK - shallow cuts or scraping with pocket knife with difficulty, pick point indents deeply with firm blow.	3500-7500	250-500	25-50	Coal, schist. siltstone
$R 3$	MODERATELY STRONG ROCK - knife cannot be used to scrape or peel surface, shal low indentations under firm blow from pick point.	$\begin{aligned} & 7500- \\ & 15000 \end{aligned}$	500-1000	50-100	Sandstone, slate, shale
R4	STRONG ROCK - hand-hel d sample breaks with one firm blow from hammer end of geological pick.	$\begin{aligned} & 15000- \\ & 30000 \end{aligned}$	1000-2000	100-200	Warble, granite, gneisa
$R 5$	VERY STRONG ROCK - requires many blows from geological pick to break intact sample.	> 30000	> 2000	> 200	Quartz1 te. dolerite, gabbro, basalt

 be perpendlcular to the rock surface.

Figure 5.11: Relationship between Schmidt hardness and the uniaxia compressive strength of rock, after Deere and Miller (100)

$$
\begin{aligned}
& 1 \mathrm{MPa}=1 \mathrm{MN} / \mathrm{m}^{2}=10.2 \mathrm{~kg} / \mathrm{cm}^{2}=145 \mathrm{lb} / \mathrm{ln}^{2} . \\
& 1 \mathrm{kN} / \mathrm{m}^{3}=102 \mathrm{~kg} / \mathrm{m}^{3}=6.37 \mathrm{lD} / \mathrm{ft} .3
\end{aligned}
$$

Figure 5.9: Point load test equipment manufactured by Engineering Laboratory Equipment Limited. Hemel Hempstead, Hertfordshire, England.

Figure 5.10: Relationship between point load strength index and uniaxial compressive strength. $1 \mathrm{MPa}=10.2 \mathrm{~kg} / \mathrm{cm}^{2}=145 \mathrm{lb} / \mathrm{in}^{2}$.

A less reliable but simpler alternative to the point load test for determinlng the unlaxlal compresslvestrength of rock ls the use of the Schml dt hamer (89,99). An advantage of th is method ls that it can be applied directly to an unprepared jolnt surface and can be used to obtaln a direct estlmate of the jolnt compressive strength σ_{j}.

The relatlonshlp between compresslve strength and Schmidt hardness ls glven In Flgure 5.11. Suppose that a horlzontally held type L hamer glves a reading of 48 on a rock with a density of $27 \mathrm{kN} / \mathrm{m}^{3}$, the unlaxial compresslve strength $\sigma_{C} \mathrm{ls}$ glven by

Point Load Index $I_{8}=\frac{P}{D^{2}}$

specimen surface before testing, from the measured angle $(\phi+$ $i)$ as determined In the test.

Estimating joint compressive strength and friction angle

When it is impossible to carry out any form of shear test, the shear strength characteristics of a rock surface can be approximated from Ladanyi and Archambault's equation or from Barton's equation. In order to solve either of these equations It is necessary to determine or to estimate values for σ_{j}, the joint material compressive strength, @, the basic angle of friction of smooth surfaces of this rock type and i, the average roughness angle of the surface or JRC, Barton's Joint Roughness Coefficient.

The unlaxlal compressive strength of the jolntwall mater lal can be obtalned by corling through the Jolnt surface and then testing specimens prepared from thls core. This is a complex process and, If facl I itles and time are avallable to carry out such tests, they would almost cartalnly be avallable for a drect shear test. Consequently, unlaxlal compressive strength tests on material samples would seldom be a logical way In which to obtaln the value of σ_{j}.

A simpler alternative which can be used In elther the fleld or the laboratory is the Polnt Load Index test(97). This simple and Inexpenslve test can be carrled out on unprepared core and the loading arrangement Is 1 I I ustrated In the margin sketch. Two types of commerclally avallable polnt load testing machlne are Illustrated In Flgures 5.8 and 5.9. A reasonable correlatlon exlsts between the Polnt Load Index and the unlaxlal compressive strength of the materlal(98), as shown In Figure 5.10 and Is given by:

$$
\begin{equation*}
\sigma_{c}=24 / 5 \tag{27}
\end{equation*}
$$

where σ_{C} is the unlaxial compressive strength and l_{s} Is the pol nt load strength Index.

Note that σ_{j}, the compressive strength of the rock materlal adjacent to the joint surface, nay be lover than σ_{C} as a resu It of weathering or loosening of the surface.

In order to judge whether a polnt load test is valld, the fractured pleces of core should be examined. If a clean fracture runs from one loading polnt Indentation to the other, the test results can be accepted. However, If the fracture runs across sane other plane, as may happen when testlng schlstose rocks, or If the polnts sink Into the rock surface causing excessive crushing or deformation, the test should be rejected.

Figure 5.8: Polnt Load Index test qulpment manufactured by Robertson Research Ltd., Llandudno, North Wales.
*The constant of 24 In thls equation ls for a 54 nm core. Values for other core sizes are:
$20 \mathrm{~mm}-17.5,30 \mathrm{~mm}-19,40 \mathrm{~mm}-21,50$ mm-23, 60 mm-24.5

Figure 5.7b: Specimen, still wired together, is fitted into the lower shear box and the upper shear box is then fitted in place. Note that the load cables can be bent out of the way for easy access.

Figure 5.7c: The wires binding the specimen halves together are cut: and the normal and shear loads are applied.

Portable shear machine with two shear toad jacks which allow shear reversal under constant normal load.
specimen together are then cut and the shear load cable ls placed In position.
C. The specimen Is now ready for testing and the normal load Is Increased to the value chosen for the test. This normal load is malntalned constant whlle the shear load Is Increased. A note ls kept of disp lacements dur Ing the app I Ication of the shear load.
d. Once the peak strength has been exceeded, usual ly after a shear displacement of a few ml llmeters, the displacement Is al lowed to continue and It wlli be found that a lower shear load Is requ 1 red \ln order to sustaln movement.
e. The machine Illustrated Is Ilmited to a displacement of approximately 1 Inch (2.5 cm) and, In order to determine the resldual shear strength, a displacement In excess of thls value ls normally required. This can only be achleved If the normal load ls released and the upper half of the spoclmen ls moved back to Its starting position. In another version of the machlne, manutactured by Robertson Research Ltd., a second Jack act Ing In opposit Ion to the shear load jack has been added to al low for shear reversal under coństant normal load.

Which of these systems is more representative of the shearling process In the rock mass ls uncertaln since, In one case, the detrital materlal is disturbed when the normal load Is released while, In the other, the direction of rolling of the particles ls reversed. It Is possible that different rock structures behave different ly under these conditions. The authors tend to prefer the slngle jack system since they feel that it Is Important that the direct lon of shear Ing under load should be kept constant.
f. In thls, as In most shear machInes, the loads appl led to the specimen are measured and these have to be divlded by the surface area of the discontinulty surface In order to obtain normal and shear stresses. The initlal area should be determined by direct measurement and the reduction \ln surface area with displacement should be calculated.
g. The shear strength of rock Is not general I y sens I + I ve to the loading rate and no difflculty should arlse If the loads are epplled at a rate which will permit measurements of loads and displacements to be carrled out at regular Intervals. A typlcal test would take between 15 and 30 m Inutes.

The specimen size which can be accommodated In the portable shear machlne Illustrated In Flgure 5.6 Is IImIted to about 4 Inches x 4 Inches ($10 \mathrm{~cm} \times 10 \mathrm{~cm}$) and this means that it Is very difflcult to test jolnts with surface roughness rhlch ls representative of the In situ condltions. Consequently, It Is recommended that the use of thls machlne should be restricted to the measurement of the baslc trlction angle \varnothing. Thls can be done by testing sawn surfaces or by testing field samples and by subtracting the average roughness angle i, measured on the

Figure 5.6: Drawing of a portable shear machine showing the position of the specimen and the shear surface. Drawing adapted from one by Robertson Research Ltd. A typical machine is 20 inches (51 cm) long and 18 Inches (48 cm) high and weighs $85 \mathrm{lb} .(39 \mathrm{~kg}$.)

Figure 5.4: In situ direct shear
test at Auburn dam site, after
Haverland and Slebir ${ }^{93}$.

Figure 5.5: Large scale laboratory shear machine at the tmpertal College of Science and Technology, London.
rock mass. On the other hand, preliminary stablility calculatlons carrled out durlng the route locatlon studles for a new highway are general I y restr lcted In terms of access to the rock mass and also tIme and money avallable for the study, hence elaborate and expensive testing ls not justlfled. Under these , clrcumstances, realistlc estlmates of the shear strength on the basls of the approaches proposed by Barton and by Ladanyl and Archunbault normally have to be used.

Figure 5.4 Illustrates the arrangements for a large scale insltu shear test to be carrled out In an underground adit. This type of test costs several thousands of dol lars and would on I y be justifled under the most critical condltons. Alternative In situ shear test arrangements have been discussed by Serof Im and Lopes(92), Haverland and Sleblr(93), Rulz and Camargo(94) and Brawner, Pentz and Sharp(95).

A laboratory shear machlne designed and bullt at the Imperial Col lege of Science and Technology In London Is I I lustrated In Flgure 5.5. This machine accepts samples of approximately 12 Inches $x 16$ Inches and has a capaclty of 100 tons In both normal and shear dlrectlons. The loading rate ls varlable over a very wide range and normal and shear olsplacements can be monltored continuously durlng the test. Indlvidual tests on thls machlne are relatively expensive and Its use ls normally only justlfled on major projects.

A portable shear machine for testing rock discontinultles In small fleld samples has been descrlbed by Ross-Brown and Walton(96) and a drawing of this machlne Is presented In Flgure 5.6. Thls machlne was deslgned for fleld use and many of the refinements which are present on larger machines were sacrif Iced for the sake of simpl|city. Any competent machlne shop technician should be capable of fabricating such a machlne and the reader Is encouraged to utillize the Ideas presented In Flgure 5.6 to develop hls own shear testing equipment. Alternatlvely, machines manufactured to this design are avallable commerclally from Robertson Research Ltd., Llandudno, North Wales.

The steps Involved In testling a sample In the portable shear machlne are II lustrated In Figure 5.7 and these steps are descrlbed below:
a. A semple containing the discontinulty to be tested is trlmed to a size wich wlllflt Into the mould. The two halves are wired together In order to prevent movement along the discontinulty and the sample Is then cast In plaster or concrete. Care must be taken that the discontinulty ls positioned accurately so that It lles In the shear plane of the machine. A bed of clean gravel, placed in the bottom of the first mould, Is sometlmes helpful In supporting the speclmen durlng settling up and, provided that a wet mixis used, the gravel can be left In place so that lt becomes part of the casting.
b. Once the castings have set, the mould Is strlpped and the specimen Is transferred Into the shear machine. The upper shear box Is set In position and a small normal load Is app I led In order to prevent movement of the specimen. The wires binding the two halves of the

A. Rough undulating - tension joints, rough sheeting, rough bedding.
8. Smooth undulating = smooth sheeting, non-planar foliation, undulating JRC = $\mathbf{1 0}$ bedding.
C. Smooth nearly planar - planar shear joints, planar foliation, planar JRC $=5$ bedding.

Figure 5.2: Barton's definition of Joint Roughness Coefficient JRC.

Figure 5.3 Barton's prediction for the shear strength of rough discontinuities.

An alternative approach to the problem of predicting the shear strength of rough jolnts was proposed by Barton(82). Based upon careful tests and observations carrled out on artificlally produced rough "Jol nts" In materlal used for model studles of slope behavlor (90,91), Barton derlved the fol lowing empirical equatlon:

$$
\tau=\sigma \operatorname{Tan}\left(\phi+J R C \cdot \log _{10} \frac{\sigma_{3}}{\sigma}\right)
$$

where JRC Is a Jolnt Roughness Coefflcient which Is defined In Flgure 5.2. The roughness angle ζ In equation 20 has been replaced by the normal stress dependent term contalning JRC.

Barton's equation has been plotted In Flgure 5.5, for JRC values of 20,10 and 5 . For compar I son the res 1 dual strength of a smooth joint with $\varnothing=30^{\circ}$ and Ladanyl and Archambau it's equation for $\bar{z}=20^{\circ}$ and $\varnothing=30^{\circ}$ are Included In the same figure.

Note that, wile Barton's equation Is In close agreement with Ladanyl and Archambault's (for $Z=J R C=20$) at very low normal stress levels, the equations diverge as the normal stress level Increases. This Is because Barton's equation reduces to $\boldsymbol{\tau}=\sigma$ Tan \varnothing as $\sigma / \sigma \rightarrow 1$ whereas Lanadyl and Archambau $1+1$'s equat lon reduces to $\tau=\Sigma_{r}$, the shear strength of the rock mater I al adjacent to the jolnt surface. Barton's equation tends, therefore, to be more conservative than Ladanyl and Archambault's at hlgher normal stress levels.

Barton's original studles were carried out at extremely low normal stress levels and his equation Is probably most applicable In the range $0.01<\sigma / \sigma<0.3$. Since the normal stress levels which occur in most rock slope stabll lty problems fal I withln thls range, the equation Is a very useful tool In rock slope engineerling and the authors have no hesitation in recommending Its use withln the specifled stress range. Note that, as $\sigma / \sigma \rightarrow 0$, the logarithmicterm In equation 26 tends to Infinlty and the equation ceases to be valld. Barton(82) suggests that the maximum value of the term In the brackets In equation 26 shou Id be 70° as shown In Flgure 5.3.

Shear testling of discontInultles In rock

From the discussion presented In the preceding pages It wlll be evident that, In order to obtain shear strength values for use In rock slope design, some form of testing is required. Thls may take the form of a very sophisticated laboratory or In sltu test In which all the characteristics of the In situ behavlor of the rock discontinulty are reproduced as accurately as posslble. Alternatively, the test may Involve a very simple determination or even estimate of the joint compressive strength σ_{j}, the roughness angle \bar{z} and the basic friction angled for use In Barton's or Ladanyl and Archambault's equat Ion. The cholce of the most approprlate method depends upon the nature of the problem being investlgated, the facliltles which are avallable and the amount of time and money which has been allocated to the solution of the problem. In carrying out a detalied design for a critical slope such as that adjacent to a major Item of plant or In the abutment of an arch dam, no expense and effort would be spared In attempting to obtaln rellable shear strength values for critical discontInultles encountered In the
where, for rough rock surfaces, $K=4$ and $L=1.5$.
Substluting equatlons 22, 23 and $24 w 1$ th $n=10, K=4$ and $L=$ 1.5 Into equation 21 , and dividing through by σ_{j}, one obtalns

$$
\frac{\tau}{\sigma}=\frac{\frac{\sigma}{\sigma}\left(1-\frac{\sigma}{\sigma}\right)^{1.5}\left(\left(1-\frac{\sigma}{\sigma}\right)^{4} \operatorname{Tan} i+\operatorname{Tan} \theta\right)+0.252\left(1-\left(1-\frac{\sigma}{\sigma}\right)^{1.5}\right)\left(1+10 \frac{\sigma}{\sigma}\right)^{0.5}}{1-\left(11-\frac{\sigma}{\sigma}\right)^{5.5} \operatorname{Tan}(\operatorname{Tan} \sigma)}
$$

While this equation may appear complex, It wI I be noted that It relates the two dimenslonless groups τ / σ, and σ / σ, and that the only unknowns are the roughness engle i and the basic frictlon angle \varnothing.

Figure 5.1, below, shows that Ladanyi and Archambault's equat lon 25 gives a smooth transition between Patton's equation 20 for dilation of a rough surface and Falrhurst's equation 22 for the shear strength of the rook materlal adjacent to the Jolnts.

FIgure 5.1 : Transition from dllation to shearing prodicted by Ladanyl and Archambault's equation. Plotted for $i=20^{\circ}$ and $\phi=30^{\circ}$.

The transition from dilation to shearing was studied theoretically ad exper lmentally by Ladanyl and Archambault $(85,86)$ who proposed the following oquation for pork shear strength:

$$
\begin{equation*}
\tau=\frac{\sigma\left(l-\alpha_{s}\right)(\dot{v}+\tan \theta)+a_{s} \cdot \tau_{r}}{1-\left(1-\alpha_{s}\right) \dot{\dot{v}} \tan \theta} \tag{21}
\end{equation*}
$$

where α_{s} Is the proportion of the discontinulty surface which Is sheared through projectlons of Intact rock material,
\dot{V} is the dllation rate $d v / d u$ at pork shear strength, and
τ_{μ} Is the shear strength of the Intact rock mater I al.
At very low normal stress levels when almost no shearing through projections takes place, $a_{s} \rightarrow 0$ and $\dot{v} \rightarrow$ Tan \dot{i}, eque tlon 21 reduces to oquation 20. At vary high normal stresses when $a_{s}-1, \tau-Z_{r}$.

Ladanyl and Archembault suggested that τ_{Γ}, the shear strength of the materlal adjacent to the discontinulty surfaces, can be represented by the oquation of a parabola In eccordance with a proposal by falrhurst(87):

$$
\begin{equation*}
\tau_{r}=\sigma_{j} \frac{\sqrt{1+n}-1}{n}\left(1+n \frac{\sigma}{\sigma_{j}}\right)^{\frac{1}{2}} \tag{22}
\end{equation*}
$$

whore σ_{f} is the unlaxial compresslve strength of the rock materlal adjacent to the dircontinulty rhich, due to weathering or loosening of the surface, may be lower than the unlaxlal compressive strength of the rock - atorlal within the body of an Intact block,
n Is the ratlo of unlaxial compressive to unlaxial tensile strength of the rock material.

Hoek(88) has suggested that, for most hard rocks, n Is approxlmately equal to 10 .

Note that, In uring Ladanyl and Archambault's - quetion, it is not necessary to use the definition of Z_{r} given by oquation 22. Any other appropilate Intact rock materlal shear strength crltorlon, such as $Z_{r}=C_{j}+\sigma$ Tang, can be used In place of equation 22 If the user feels that such a criterion gives a more accurate representation of the behavlor of the rock with rhlch he is deal ling(89).
The quantity a_{5} in - quatlon 21 is not easy to meesure, even under laboratory conditions. The dllatlon rate \dot{y} can be measured during a shear test but such measurements have not usually been carrled out In the past ad hence It Is only posslble to obtain values for \dot{v} from a small proportlon of the shear strength data which has boon published. In order to overcome this problem and to make thelr oquation more general ly useful. Ladanyl and Archambaul + carr led out a large number of shear tests on prepared rough surfaces and, on the bar is of these tests, proposed the following emplrical relationshlps:

$$
\begin{align*}
& \dot{v}=\left(l-\frac{\sigma}{\frac{\sigma}{f}}\right)^{k} \tan i \tag{23}\\
& a_{5}=1-\left(1-\frac{\sigma}{\delta}\right)^{L} \tag{24}
\end{align*}
$$

Patton'8 measurement of i angles for first and second order projections on rough rock surfaces.
dered when attempting to understand the behavlor of actua I rock surfaces.

Surface roughnoss

The d Iscuss lon on the prevlous page has been slmp I if fed because Patton found that, In order to obtain reasonable agreement between hls fleld observations on the dip of unstable bedding planes and the sum of the roughness angle i and the basic trictlon angle ϕ, It was necessary to measure only the first order roughness of the surfaces. Thls ls dofined In the margin sketch which shows that the first order projections are those whlch correspond to the major undulations on the bedding surfaces. The small bunps and rlpples on the surface have much hlgher \boldsymbol{z} values and Patton ca I I ed these the second order project lons.

Later studles by Borton(82) show that Patton's results were related to the normal stress acting across the bedding planes In the slopes whlch ha observed. At very low normal stresses, the second order projections come Into play and Barton quotes a number of values of $(\Phi+i)$ whlch were measured at extremely low normal stresses. These values are summerlzed In the follow Ing table:

Assuming a baslc friction angle of 30°, these results show that the offectlve roughness angle i varles between 40° and 50° for these very low normal stress levels. In fact, one can assume that almost no fracturling of the very small second order projectlons takes place at these low normal stress levels and that these steep-sided projections control the shearing process. As the normal stress Increases, the second order projections are sheared off and the flrst order project lons take over as the control I Ing factor. One can lmagine that, as the normal stress I ncreases even further, the first order projections willbe sheared off and a sltuation wll l eventually be reached where shearlng takes place through the Intact rock material rhlch makes up the projectlons and the effectlve roughness angle \mathcal{Z} Is reduced to zero.

Shearlng on an Inclined plane

In the prevlous dlscussion it has been assumed that the discontinulty Surface along which shearing occurs is exactly parallel to the direct lon of the shear stress τ. Let us now consider the case where the discontinulty surface is Incllned at an angle to the shear stress direction, as Illustrated In the margin sketch.

In this case, the shear and normal stresses acting on the fal 1ure surface are not \mathcal{Z} and σ but are given by the fol lowing equatlons:

$$
\begin{align*}
& \tau_{i}=\tau \cos 2 i-\sigma \sin i \cos i \tag{17}\\
& \sigma_{i}=\sigma \cos 2 i+\tau \sin i \cos i \tag{18}
\end{align*}
$$

If It Is assumed that the discontinulty surface has zero cohesive strength and that its shear strength is given by

$$
\begin{equation*}
\tau_{i}=\sigma_{i} \operatorname{Tan} \varnothing \tag{19}
\end{equation*}
$$

then equations 17 and 18 can be substituted Into equation 19 to give the relationshlp between the applled shear and normal stresses as:

$$
\begin{equation*}
\tau=\sigma \tan (\phi+i) \tag{20}
\end{equation*}
$$

Thls equation was conflrmed In a serles of tests on models with regular surface projectlons carried out by Patton(40) who must be credited with having emphaslzed the importance of this slmple relationship in the analysts of rock slope stablilty.

Patton convincingly demonstrated the practical signlf Icance of this relatlonship by measurement of the average value of the angle \boldsymbol{z} from photographs of bedding plane traces In unstable IImestone slopes. Three of these traces are reproduced in the margin sketch and It wlll be seen that the rougher the bedding plane trace, the steeper the angle of the slope. Patton found that the Incllnation of the bedding plane trace was approxlmately equal to the sum of the average angle i and the basic friction angle \varnothing found from laboratory tests on planar surfaces.

An extremely Important aspect of shearing on discontinuitles which are Inclined to the direction of the applied shear stress τ Is that any shear disp lacement U must be accompan led by a normal displacement ν. In the case of a specimen with several projections, such as that tested by Patton, this means that the overall volume of the specimen will Increase or that the specimen dilates. This dilation plays a very important part In the shearlng behavlour of actual rock surfaces as wlll be shorn In subsequent discussions.

Note that, up to thls polnt, the discussion has been llmited to the problem of shearing along a single discontinulty or along a famlly of parallel discontinulties and that the question of fracture of the materlal on elther side of the discontinulties has not been consldered. As wlll be shown on the fol lowing pages, fracturling of Interlocking surface projectlons on rock discontinultles Is an Important factor which has to be consi-

level, results In the type of curve lllustrated In the upper margl n sketch. At very small displacements, the specimen behaves elastically and the shear stress Increases Ilnearly with displacenent. As the forces reslstlng movement are overcome, the curve becomes non-I Inear and then reaches a peak at whlch the sheaf stress reaches its maximum value. Thereafter the shear stress required to cause further shear displacement drops rapldy and then levels out at a constant value called the resldual shear strength.

If the peak shear strength values obtalned from tests carrled out at dif ferent normal stress' level s are plotted, a curve such as that II lustrated In the center margin sketch resu lts. This curve wil I be approximately Ilnear, within the accuracy of the exper Imental results, with a slope equal to the peak frlction angle Φ_{D} and an Intercept on the shear stress axis of c, the cohesive strength of the cement Ing mater lal. Thls cohesive canponent of the total shear strength Is Independent of the normal stress but the frlctlonal component Increases with the Increasing normal stress as shown In the sketch. The peak shear strength is defined by the equation

$$
\begin{equation*}
\tau=\sigma_{p}+\sigma \operatorname{Tan} \sigma_{p} \tag{15}
\end{equation*}
$$

which, with the exception of the subscripts, is identical to equation 1 on page 2.5.

Plotting the resldual shear strength agalnst the normal stress gives a Ilnear relationshlp defined by the equation

$$
\begin{equation*}
\tau=\sigma \operatorname{Tan} \phi_{r} \tag{16}
\end{equation*}
$$

which shows that all the coheslve strength of the cementing moterlal has been lost. The resldual frlction angle \mathscr{O}_{r} is usually lower than the peak frlction angle \mathscr{D}_{p}.

Influence of water on shear strength of planar discontinultles

The most Important Influence of the presence of water In a discontinulty in rock is a reduct lon of shear strength due to a reduction of the effectlve normal stress as a result of water pressure. Equation 10 on page 2.8 shows that this normal stress reduction can be Incorporated Into the shear strength equation In the following manner:

$$
\begin{equation*}
\tau=c+(\sigma-\alpha) \operatorname{Tan} \phi \tag{10}
\end{equation*}
$$

where u Is the water pressure within the discontinulty and cis elther equal to C_{p} or zero and δ elther Φ_{p} or σ_{p}, depending upon whether one Ís concerned with peak or resl dual strength.

As discussed on pages 2.8 and 2.9 , the Inf luence of water upon the cohesive and frlctlonal propertles of the rock discontinuIty depends upon the nature of the fIII Ing or cement Ing material. In most hard rocks and In many sandy solls and gravels, these propertles are not slgnlflcantly altered by water but many clays, shales, mudstones and similar materlals willexhiblt signitlcant changes as a result of changes In molsture content. It Is Important, therefore, that shear tests should be carried out on samples which are as close as possible to the In sltu molsture content of the rock.

Chapter 5 Shear strength of rock.

Introduction

In analyzing the stabllity of a rock slope, the most Important factor to be considered Is the geometry of the rock mass behind the slope face, As discussed In Chapter 3, the geometr Ica I re latlonshlp between the discontInultles In the rock mass and the slope and orlentation of the excavated face wlll determine whether parts of the rock mass are free to sllde or fall.

The next most Important factor Is the shear strength of the potential fallure surface which may consist of a single discontinutty plane or a complex path following several discontinultles and involving some fracture of the Intact rock materlal. Determination of rellable shear strength values is a critical part of a slope deslgn because, as wll l be shown In later chapters, relatively small changes in shear strength can result In signlflcant changes In the safe helght or angle of a slope. The cholce of approprlate shear strength values depends not only upon the avallabllity of test data but also upon a careful interpretation of these data In the light of the behav lor of the rock mass uhlch makes up the full scale slope. While It may be possl ble to use the test results obtalned from a shear test on a rock joint In designing a slope in uhlch fallure ls likely to occur along a single joint surface, similar to the one tested, these shear test results could not be used directly In designIng a slope In uhlch a complex fallure process involving several JoInts and some Intact rock fallure Is anticipated. In the I atter case, sane modiflcation would have to be made to the shear strength data to account for the dl f ference between the shearing process in the test and that antlclpated In the rock mass. In additlon, differences In the shear strength of rock surfaces can occur because of the Inf luence of weathering, surface roughness, the presence of water under pressure and because of differences In scale between the surface tested and that upon which slope fallure Is likely to occur.

From this discussion It wlll be clear that the cholce of approprlate shear strength values for use In a rock slope design depends upon a sound understand ling of the basle mechanlcs of shear fallure and of the Influence of varlous factors which can alter the shear strength character ist Ics of a rock mass. it Is the alm of thls chapter to provide this understanding and to encourage the reader to explore further In the IIterature on thls subject.

Shear strength of planar dlscontInultes

Supposing that one were to obtain a number of semples of rock, each of which had been cored from the same block of rock whlch contalns a through-golng discontlnulty such as a bedding plane. Thls bedding plane is stlil cemented, In other words, a tensile force would have to be applled to the two halves of the specimen on elther side of the discontinulty In order to separate them. The bedding plane is absolutely planar, having no surface undu lat lons or roughness. Each specimen Is subjected to a normal stress σ, applled across the discontInulty surface as IIlustrated In the margin sketch, and the shear stress τ required to cause a displacement U is measured.

Plotting the shear stress level at varlous shear displacements, for one of the tests cart-fed out at a constant normal stress
70. MOYE, D.C. Diamond drilling for foundation exploration. Civil Engineering Transactions, Institutia of Engineers of Australia. Vol. CES, 1967, pages 95-100.
71. KEHPE, W.F. Core oricntat ion. Proc. 12th Exploration Drilling Symposizu, University of Minnesota, 1967.
72. ROCHA, H. A method of integral sampling of rock masses. Rook Mechanics, Vol. 3, No. 1, 1967. pages l-12.
73. KREBS, E. Optical surveying with a borehole periscope. Mining Magazine, Vol. 116, 1967, pages 390-399.
74. BURWELL, E.B. and NESBITT, R.H. The NX borehole camera. Tmneactione American Inst. Mining Engineers, Vol. 194. 1954, pages 805-808.
75. HOEK, E. and PENTZ, D.L. Review of the role of rock mechanics research in the design of opencast mines. Proc. 9th commorwealth Mining and Metallurgical Congress, London, 1969, paper No. 4.
76. BALTOSSER. R.W. and LAWRENCE, H.W. Application of well logging techniques in metallic mineral mining. Geophysics, Vol. 35. 1970. pages 143-192.
77. TIXIER, H.P. and ALGER, R.P. Log evaluation of nonmetallic mineral deposits. Geophysics, Vol. 35, 1970, pages 124-142.
78. ZEMANEK, J. The borehole televiewer - a new logging concept for fracture location and other types of borehole inspection. Society of Petroleum Engineers, Houston, Texas, September 1968. 14 pages.
79. GEOLOGICAL SOCIETY. LONDON ENGINEERING GROUP. The logging of rock cores for engineering purposes. Quarterly Joumal of Engineering Geology, Vol. 3, No. 1, 1970, 25 pages.
60. ROYAL DUTCH SHELL COMPANY. Standard Legend, Internal Shell Report, The Hague, 1958. 200 pages. (A very comprehensive report on logging and geological data presentation).
61. LONDE, P. The role of rock mechanics in the reconnaissance of rock foundations, water seepage in rock slopes and the analysis of the stability of rock slopes. Quarterly Jowmal of Engineering Geology. Vol. 5, 1973, pages 57-127.

Add reference
81A Call, R.D., Sovely, J.P. and Pakalnis, R., "A Simple Core Orientation Technique" in Stability in Surface Mining (C.O. Brawner, Ed.), SME, AIME, Vol. 3, pp. 465 - 481, New York. 1982.

81B Wood, O.F., CIay Imprint Core Orientator, Golder Associates' Field Manual, 1987.

Selected references on geological data collection

56. miLLER, V.C. PhotogeoZogy. International Series on Earth Sciences. McGraw Hill Book Co., New York, 1961. 240 pages.
57. BROADBENT, C.D. and RIPPERE. K.H. Fracture studies at the Kimberley Pit. Proc.Symposi um on Planning Open Pit Nines, Johannesburg, 1970. Published by A.A. Balkema, Amsterdam, 1971, pages 171-179.
58. WEAVER, R. and CALL, R.D. Computer estimation of oriented fracture set intensity. Symposiven on Computers in Mining andExploration. University of Arizona, Tucson, 1965. 17 pages. (Unpublished paper available from University of Arizona.)
59. HALSTEAD, P.N., CALL, R.D. and RIPPERE. K.H. Geological structural analysis for open pit slope design, Kimberley pit, Ely, Nevada. A.I.M.E. Preprint 68AM-65, 1968. Unpublished paper available from A.I.M.E., New York.
60. DA SILVEIRA, A.F., RODRIGUES, F.P., GROSSHAN, N.F. and HENDES, F. Qualitative characterization of the geometric parameters of jointing in rock masses. Proc. 1stCongress of the International Society of Rock Mechanics, Lisbon 1966, Vol. 1, pages 225-233.
61. TERZAGHI, R. D. Sources of error in joint surveys. Geotechnique, Vol. 15, 1965, pages 287-304.
62. MOFFIT, F.R. Photogrametry. International Textbook Company, Scranton, Pennsylvania, 1967.
63. Calder, p.n., bauer, A. and hacdougall, A.R. Stereophotography and open pit mine design. Canadian Inst. Min. Metall. Bulletin, Vol. 63, No. 695. 1970, page 285.
64. ROSS-BROWN, D.M. and ATKINSON. K.B. Terrestial photogrammetry in open pits. Proc. Inst. Min. Metall. London, Vol. 81, 1972, pages A205-A214.
65. WILLIAMS, J.C.C. Simple photogrannetry. Academic Press, London, 1969, 211 pages.
66. FECKER, E. and RENGERS, N. Measurement of large scale roughness of rock planes by means of profilograph and geological compass. Proc. Symposium on Rock Fracture, Nancy, France, 1971. Paper 1-18.
67. ROSENGREN, K.J. Diamond dri lling for structural purposes at Mount Isa. Industrial Diamond Review. Vol. 30, No. 359, 1970, pages 388-395.
68. JEFFERS. J.P. Core barrels designed for maximum core recovery and drilling performance. Proc. Diamond Drilling Symposivm, Adelaide, August, 1966.
69. HUGHES, M.D. Diamond drilling for rock mechanics investigations. Rock Mechanics Symposivm, University Sydney, Australia, 1969, pages 135-139.

Abstract

A final word to engineers - we sometimes bel leve ourselves capable of quantlfying a subject to a much greater extent than is actually possible. The geologist is frequently blamed for poor qua IIty data and yet - If he did provide us with precise informat lon on al I the parameters I Isted above, would we real I y know what to do with It? How do you decide on the mechanlcal propertles of a rock mass? The real answer Is that we do not know but It is very convenlent to have someone to blame for our lack of knowledge. In the final analysis, the best we can do Is make an Informed guess and the more Information we have avallable at that time the better. This information must Include a personal assessment of the rock cond It tons so that the geolog ist's reports can be read agalnst a background apprecl at lon of the actual site conditions. This Imposes an obligation on the rock engineer to devote a little less time to his calculations and a liftle more to field observations. Thls obllgatlon was summed up by Londe In a lecture on the design of rock foundations when he sald "The tlme has come for us to consult not only the experts but the rock as well ${ }^{\prime \prime}(81)$.

from a 2,201 ft. 8 Inch diameter borehole, only 37 ft . was succsssfully orlented with the ald of a boreholetelevision camera. The authors' personal experlences with these devices have almost persuaded them that lt would have been more prof itable to Invest In the provision of geology courses for leprechauns (who are reputedly smel l enough to f lt down a borehol of reasonable size). However. It must be admitted that, In the hands of special 1st operators, these Instruments can provide very valuable information. It seems more than likely that, with developments In the fleld of electronlcs, better and more reliable Instruments of this type will become avallable In the years to come.

The mining and clvil englneering Industrles have a great deal to learn from the ol I Industry In this area of borehole Interpretation and well logging devlces such as the Televlewer are bound to find greater appllcations In site Investigation In years to come($76,77,78$).

Presentation of geological Information

The collection of structural geologlcal data ls a difficulf enough problem. Communlcation of thls data to everyone concerned In the design of a highway ls even more difficult. In the provlous chapter It was suggested that the dips and dip directions of discontlnultles are most convenlently presented on equal-area stereoplots. This information, In Itself, Is not adequate for the design of a rock slope since the strength of the rock mass is also requlred.

Ideally, the following Information Is required for each signif Icant discontinulty.

a)	Locatlon In relation to map references
b)	Depth below reference datum
c)	Dip
d)	Dip direction
e)	Frequency or spacing between adjacent discontinulties
f)	Continulty or extent of discontlnulty
g)	Width or opening of discontinulty
h)	Gouge or Inf II IIng between faces of discontinulty
1)	Surface roughness of faces of discontinulty
1)	Wovlness or curvature of dlscontlnulty surface
k)	Description and propertles of Intact rock between discontinuities.

Much of thls Information cannot be used quantitatively In a stabllity calculation but it al lasslsts the anglneer or geologist In deciding upon the most probable fal lure mode and In assigning reasonable strength propertles to the rock mass. Consequently It Is Important that It should be recorded and presented In such a way that the maximum amount of relevant Information is conveyed to those who were not invol ved In the logging Itself.

Although standard methods of data presentation have been suggested (79,80), many geologists prefer to work out thelr own systems to sult thelr particular requirements. In the authors' oplnion. It does not matter what system Is used provided that It conveys the requilred information. If It does not serve this purpose then the geologlst shou Id have the courage to change it.

Core orientation device using clay to take indrint of core stub on end of drill hole.

A reinforced core, sectioned to show the rod grouted into the coavial pilot hole. Note that the top end of the rod is square in order that it oan be oriented. (Photograph reproduced with permission of Dr. M. Rocha.)
then retrieved with the wire-line and a conventional barrel is lowered to continue coring. The recovered core is fitted together and a straight reference line is transferred from the oriented barrel to the reconstructed core using the imprint match between the clay and the uphole core stub. Extreme hole inclinations for this technique range from about 45 to 70 degrees with optimum inclinations in the range of 60 to 65 degrees. Verification imprints should be taken frequently on each core run if possible to confirm the correct operation of the system. The method of use of the clay imprint orientor is shown on Page 4.15.

An alternative method, used In the Christensen-Hugel core barrel, Is to scribe a reference mark on the core. The reference mark is orlented by a magnetlc borohole survey Instrument mounted In the core-barrel(71).

Rosengren(67) describes a slmple device for core orlontation In Inclined holes. A short dummy barrel holding a marking pen and a mercury orlenting switch Is lowered down the hole on IIghtwelght rods. The device ls rotated untll the mercury swltch oporates at a known orlontation and the marker pen is then pushed onto the bottom of the hole, marking the core stub In thls known positlon. Another system used by Rosengren for core orlontation In Inclined holes ls to break a small container of psint agalnst the end of the hole. The palnt will run down the face of the core stub, thereby marking Its orlentation with respect to the vertical.

The most elaborate system of core orlentation is to drl I I a smal I dlaneter hole at the end of the parent hole and to bond a compass of an orlonted rod Into thls hole(69). Thls scheme has been taken further by Rocha(72) In order to recover Intact an orlented core. Rocha describes drilling a pllot hole along the axls of a core and grouting an orlented rod Into this hole. Overcoring thls relnforced material glves an Intact stick of orlented core In the worst types of materlal.

Walton of the Natlonal Coal Board In England has used a slmilar technlque In which a wirellne tool containing a bomb of polyestor resin ls lowered down a hole In wilch a pllot hole has been drilled. The resin charge Is released and flows Into the hole, carrylng with it a floating compass. Resin relnforced cores have been successfully recovered fron depths of 125 m (410 ft) In coal measures but there are many practical difficultles assoclated with keeplng the pllot hole In position and preventing caving In poor quality rock.

Examination of borohole walls
Because of the practlcal problems Involved In orlentation of core, another approach is to examine the walls of the borehole In an effort to map traces of structural features.

A borohole perlscope, conslsting of a rlgld tube which supports a system of lenses and prl sins, Is probably the most successful Instrument for borehole examination. A major advantage of this device Is mat It ls orlented from outside the hole but a disadvantage is that It Is only effective to borehole depths of approximately 100 \&t.(73).

Varlous types of borohole cemeras have been developed(74,75) and small diameter television cameras have also been used for the examination of borehole walls. Broadbent and Rlppere(57) report rather sadly that out of $1,116 \mathrm{ft}$. of core recovered

A 48 inch diameter Calyx core recovered by the Hydroe lectric Commission of Tasmania during site investigctions for a dam.
diameter core barrels for structural drllling. The most common size used at present is $N \times(2-1 / 8$ Inch or 56 mm) but cores of 3 Inch, 4 Inch and 6 inch are favoured by some. Rosengren(67) descrlbes the use of large diameter thln wal led drililing equipment for underground hard rock drI I I Ing at Mt. Isa, Austral la. The Natlonal Coal Board In England frequently uses 4-1/2 Inch diameter double-barrel dril ls with alr-f lushing for exploration of potentlal opencast sites.

An extreme example, Illustrated opposite, Is a 48 Inch diameter Calyx core fran a dam-site Investlgation In Tasmanla. Thls type of drlilling would obvlously only be justifled In very special clrcumstances which the authors could not visualize occurring on highways.

Core orlentation

It should have become obvlous, from provlous chapters, that the dip and dip direction of discontinultles are most Important In slope stablilty ovaluations. Consequently, however successf u I a dr 1 I I Ing program has been In terms of core recovery, the most valuable Information of all wll have been lost If no effort has been made to orlent the core.

One approach to thls problem ls to use Incllned boreholes to check or to deduce the orlentation of structural features. For example, If surface mapplng suggests a strong concentratlon of planes dipplng at 30^{\prime} In a dlp direction of 130°, a hole drilled In the direction of the normal to these planes, l.e. dippIng at 60° In a dip direction of 310°, wll Intersect these planes at rlght angles and the accuracy of the surface mapplng prediction can be checked. Thls approach Is useful for checkIng the dlp and dip direction of critlcal planes such as those In the slates on the eastern slde of the hypothetlcal highway cut shown In Figure 3.10.

Alternatlvely, If two or more non-parallel boreholes have been drllled In a rock mass In whlch there are recognlzable marker horizons, the orlentation and Incllnation of these horltons can be deduced using graphlcal techniques. Thls approach Is extensively discussed In publ Ished Ilterature and Is usefu I Iy summarlzed by Philllps(42). Where no recognlzeble marker horlzons are present, this technlque ls of little value.

A second approach Is to attempt to orlent the core Itself and, whlle the technlques avallable abound with practical difflcultles which are the despair of many drlliers, these methods do provide sane of the best results currently obtalnable. In fact the greatest possible service which could be rendered to the rock englnear by the manufacturers of drlliling equipment would be the production of simple core orientation systems.

A simple core orientation technique was presented by Call, Savely and Pakalnis in 1981 (81 A), which utilizes a modified inner core barrel for use with conventional wire-line diamond drilling equipment. The method has been field tested, and improved in subsequent years by Colder Associates (818). The barrel is eccentrically weighted with lead and lowered into an inclined, fluid-filled borehole so that its orientation relative to vertical is known. Modelling clay protrudes from the downhole end of the inner barrel such that it will also extend through the drill bit when the inner and outer barrels are engaged. The barrel assembly is lowered to the hole bottom which causes the clay to take an imprint of the core stub left from the previous core run. The inner barrel is

Figure 4.5a:
A typical hydraulic thrust diamond drilling machine being used for exploration drilling. High qual ity core recovery can be achieved with such a machine. (Photograph reproduced with permission of Atlas Copco. Sweden)

Figure 4.5b:
Atlas Copco Diamec 250 drilling machine set up for structural drilling in a difficult location on a quarry bench. The machine illustrated has been modified to allow drilling with core barrels of up to 3 inches (76 mm) outer diameter.

Drilllng machines

Good core recovery In fractured ground depends upon the app IIcation of the correct thrust onto the rotat Ing dr I II blt. The flxed rate of advance provided by a screw-feed machl newl I mean hlgh bit pressures In hard formations. In soft formations, the bit pressure wll l be very low but the slow progress of the bit wil i allow the soft motorlal to be eroded by the flushing water. In contrast, a hydraulic feed machine will malntain the same thrust and wI I al low the dr I I I to move rapidly through soft formations, thereby minlmizing the erosion.

Machlnes such as that II lustrated In Flgure 4.5a are widely used for exploration drill Ing and are Ideal for structural drililing. Their one dl sadvantage is that they tend to be bu 1 ky and It is difflcult to set them up on very rough sites which may be of partlcular Interest to the rock ongineer. On the other hand, the machlne Illustrated In Figure 4.5b can easlly be rigged in very difficult locations and It can be operated as much as 100 ft . away from the prime mover and hydraul ic pump unlt. Hydraulle chucks on thls machine allow easy rod changing and permit one man operations once the machlne has been set up. Although thls machine wII not drll I to the same depths as larger mechines, It does provide adequate capaclty for structural drl II Ing for cut slopes where holes longer than about 200 ft . are not generally required.

Core barrels

The alm of structural drlll Ing Is to recover undisturbed core upon which measurements of structural features can be made. This can be achleved by the use of multiple-tube core barrels or by the use of large dianeter barrels.

In a triple-tube core barrel, the loner tube or tubes are mounted on a bearing so that they remain statlonary whlle the outer barrel, hleh carrles the diamond blt, rotates. The core, cut out by the bit, Is transferred Into the non-rotating Inner barrel where it remains undisturbed untlithe barrel is removed from the hole.

Removing the core from the barrel Is the most critical part of the operation. More than once the authors have seen core removed from an expensive double-tube core barrel by thumplng the outer barrel with a 4 lb . haer - a process guaranteed to disturb any undisturbed core wich may be In the barrel. By far the most satisfactory system Is to use a spllt Inner-barrel which is removed fra the core barrel assembly with the core Inside It and then split to reveal the undisturbed core. Sometimes a thin plastic or metal barrel is fitted inside the nonrotating barrel In order to provide the support for the core when It Is transferred Into the core-box.

Detalled ilterature on double and triple tube core barrels is avallable fran a number of manufacturers and the reader who Is untanlliar with structural drilling Is advised to consult this II terature. More general Information on drl I IIng can be obtalned from sane of the references I isted at the end of this chaptor (67-70).

Experience has shown that core recovery Increases with Increasing core diameter and there is a tendency to use larger

Figure 4.4d: Stereoplots of poles from measurements on rough rock surface using measuring plates of different diameters. The average dip of the plane is 35° and its dip direction is 170°.

Figure 4. 4e: Contours of maximum scatter for different base diameters and plot of affective roughness angle i along direction of potential sliding. Example adapted from paper by Fecker and Rengers 66 .

Figure 4.4a: Measurement of surface roughness with different base lengths. Short base length gives high values for the effective roughness angle while long bases give smaller angles.

Figure 4.4b:
5.5 cm diameter measuring plate fitted to a Breithaupt geological compass.

Photographs reproduced with permission of Dr. N. Rengers from a paper by Fecker and Rengers ${ }^{66}$.

Figure 4.4 c :
42 cm diameter measuring plate fitted to a Breithaupt geological compass for surface roughness measurement.

a) Isotropic rock slope

Permeability ratio

b) Anisotropic rock mass - horizontally bedded strata.

c) Anisotropic rock mass - strata dipping parallel to slope.

Figure 6.9 : Equipotentlal distributions in slopes with various permeability configurations.

The coetficlent of permeablity k ls calculated from falling head and constant head tests In saturated ground (test section below water table) as follows.

$$
\begin{array}{ll}
\text { Falling head: } & K=\frac{A}{F\left(t_{2}-t_{1}\right)} \cdot l_{\text {loge }} \frac{H_{1}}{H_{2}} \\
\text { constant head: } & K=\frac{q}{F H_{c}} \tag{36}
\end{array}
$$

where A is the cross-section area of the water column. $A=$ $1 / 4 \pi d^{2}$ where d is the inside diameter of the casing in a vertical borehole. For an Incl Ined hole, A must be corrected to account for the ell iptical shape of the horizontal water surface In the cosing.

F Is a shape factor which depends upon the conditions at the bottom of the hole. Shape factors for typlcal situatlons are glven In Figure 6.10.
H_{1} and H_{2} are water levels In the borehole measured from the rest water level, at times t_{1} and t_{2}, respectively.
q Is the flow rate, and
H_{C} Is the water level, measured from the rest water level, malntalned durlng a constant head test.
(Note that Naperlan logarithms are used In these equatlons and that Loge $\left.=2.3026 \log _{10}\right)$.

Consider an example of a fall ing head test carried out In a borehole of 7.6 cm dlameter with a casing of 6.0 cm diameter. The borehole is extended a distance of 100 cm beyond the end of the casing and the materlal In which the test Is carrled out Is assumed to have a ratio of horlzontal to vertical permeabl lity $k_{h} / k_{V}=5$.
The first step In this analysis is to calculate the shape factor F from the equation glven for the 4th case In Figure 6.10. The value of $m=\sqrt{5}=2.24$ and substltuttng $D=7.6 \mathrm{~cm}$ and $L=$ 100 cm ,

$$
F=\frac{2 \pi L}{\log _{e}(2 m L / D)}=\frac{628}{\log _{e} 58.19}=154
$$

Measurement of water levels at different times for the falling head test give the following values:
$H_{1}=10$ meters at $t_{1}=30$ seconds
$H_{2}=5$ meters at $t_{2}=150$ seconds
The cross-sectional area A of the water column is

$$
A=\frac{1}{4} \pi(6)^{2}=28.3 \mathrm{~cm}^{2}
$$

Substltuting In equation (35), the horlzontal permeabl IIty k_{h} Is given by

$$
k_{h}=\frac{28.3 \log _{e} 2}{154(150-.30)}=1.06 \times 10^{-3} \mathrm{~cm} / \mathrm{sec}
$$

Constant head test

End conditions		Shape factor F
	Casing flush with end of borehole in soil or rock of uniform permeability. Inside diameter of casing is d oms.	$F=2.750$
	Casing f Zush with boundary between impermeable and permeable strata. Inside diameter of casing is dcms.	$F=2.0 d$
	Borehole extended a distance L beyond the end of the casing. Borehole diameter is D.	$\begin{aligned} & F=\frac{2 \pi L}{\log _{e}(2 L / D)} \\ & \text { for } L>40 \end{aligned}$
	Borehole extended a distance L beyond the end of the casing in a stratified soil or rock mass with different horizontal and vertical permeabilities.	For determination of k_{h} : $\begin{aligned} F & =\frac{2 \pi L}{\log _{e}(2 m L / D)} \\ \text { where } m & =\left(k_{h} / k_{v}\right)^{\frac{1}{2}}, L>40 \end{aligned}$
	Borehole extended a distance L beyond the end of the casing which is flush with an inpermeable boundary.	$\begin{aligned} & F=\frac{2 \pi L}{\log _{e}(4 L / D)} \\ & \text { for } L>4 D \end{aligned}$

Figure 6.10 : Details of falling head and constant head tests for permeability measurement in soil and rock masses with shape factors for borehole end conditions.

Since the ratio of horlzontal to vertical permeabllity has been estimated, from examination of the core, as $k_{h} / k_{y}=5, k_{\gamma}=$ $2.12 \times 10^{-4} \mathrm{~cm} / \mathrm{sec}$.

Laboratory tests on core samples are useful In checking this ratlo of horlzontal to vertical permeabllity but, because of the disturbance to the sample, It Is unl lkely that the absolute values of permeabl Ilty measured In the laboratory will be as rellable as those determined by the borehole tests described. Laboratory methods for permeabl lity testing are described In standard texts such as that by Lembe(180).

Punping tests in boreholes

In a rock mass in which the groundwater flow is concentrated within regular joint sets, the permeablilty will be highly directional. If the Joint opening e could be measured In situ, the parmeability In the direction of each joint set could be calculated directiy from equation (33). Unfortunate1 y such measuraents are not possible under fleld conditions and the permaabllity must therefore be determined by pumpling tests.

A pumpling test for the measurement of the permeab IIIty In the direction of a particular set of discontlnultles such as joints Involves ofililing a borehole perpendicular to these discontinultles as shown In Flgure 6.11. It Is assumed that most of the flow is concentrated within thls one Jolnt set and that crossf lou through other joint sets, past the packers and through the Intact rock surrounding the hole is negilgible. A sectlon of the borehole Is Isolated between packers or a single packer Is used to Isolate a length at the end of the hole and water Is pumped Into or out of this cavity.

A varlety of borenole packers are avallable commerclaily(181) but the authors consider that many of these packers are too short to eliminate leakage. Leakage past packers Is one of the most serlous sources of error in pumplng tests and every effort should be made to ensure that an effective seal has been achleved before measurements are commenced. A simple, Inexpensive and hlghly effective packer has been descrlbed by Harper and Ross-Brown(182) and the princlpal features are I I lustrated In Figure 6.12. Thls packer is manufactured from rubber hosing which Is normally used In the bul Iding Industry for forming volds In concrete. It conslsts of Inner and outer rubber tubes enclosing a diagonally braided cotton core and thls arrangement allows an Increase In diameter of approximately 20% when the hose Is Inflated. Because of Its low cost and slmpliclty, long packers can be used and packer lengths of $10 \mathrm{ft} .(3 \mathrm{~m})$ have proved extremely offective In pumping tests In 3 Inch (7.6 cm) diameter boreholes.

The permeabllity of the discontinultles perpendicular to the borehole Is calculated as follows:

$$
\begin{equation*}
x=\frac{q \log _{6}(2 R / D)}{2 \pi L\left(H_{1}-H_{2}\right)} \tag{37}
\end{equation*}
$$

Figure 6.11: Pumping test in regularly jointed rock. The borehole is drilled at right angles to the joint set in which the permeability is to be measured.

Figure 6.12 : Section through the end of a packer for sealing the bottom end of a pumping test cavity. The upper packer end has additional fittings for pressure inlet and piezometer cables.
where q Is the pumping rate required to malntaln a constant pressure in the test cavity
L Is the length of the test cavity
H_{1} Is the tots I head In the test cav ity
DIs the borehole diameter
H_{2} Is the total head measured at a distance R from the borehole.

The most satlsfactory means of obtalning the value of H_{2} is to measure It In a borehole paraliel to and at a distance R from the test hole. Where a pattern of boreholes is aval 1 able, as the result of an Investigation program, thls does not present serlous problems. Technlques for water pressure measurement are dealt with In the following section of this chapter.

When only one borehole is avaliable, an epproximate solution to equat Ion (37) can be obtal ned by usi ng the shape factor F for a stratif led system (FIgure 6.10). Substltuting this value Into equation (36) gives

$$
\begin{equation*}
k=\frac{q \cdot \log _{e}(2 m L / D)}{2 \pi L H_{c}} \tag{38}
\end{equation*}
$$

where, In this case, $m=\left(k / k_{p}\right)^{\frac{1}{2}}$
k Is the permeabllity at rlght angles to the borehole (quantlty required)
k_{p} is the permeablitity parallel to the borehole which, If cross-flow Is neglected, Is equal to the permeabllity of the Intact rock
H_{c} Is the constant head above the or I glnal groundwater level In the borehole.

The value of the term $\log _{e}(2 \mathrm{~mL}$ LD) In this equation does not have a major Inf I uence upon the value of k and hence a crude estlmate of m Is adequate. Consider the example where $\mathrm{L}=4 \mathrm{D}$; the values of $\log _{e}(2 \mathrm{~mL}$ LD) are as follows:

k / k_{ρ}	1.0	10^{2}	10^{4}	10^{6}	10^{8}	10^{10}	10^{12}
m	1.0	10^{\prime}	10^{2}	10^{1}	10^{4}	10^{5}	10^{6}
$\log _{C}(2 \mathrm{~m} L / D)$	2.1	4.4	6.7	9.0	11.3	13.6	15.9

A reasonable value of k for most practical applications is given b y assuming $k / k_{p}=10^{6}, m=10^{3}$ which gives

$$
\begin{equation*}
k=\frac{1.4 q}{L H_{c}} \tag{39}
\end{equation*}
$$

In derlving equation (39), It has been assumed that the test cavity of length L Intersects a large number of discontinultles (say 100) and that the value k represents a roasonable average permeabllity for the rock mass (In the diroction at rlght angles to the borehole). When the discontinulty spacing varles
along the length of the hole, water flow wll be concentrated In zones of closely spaced discontinultles and the use of an average permeabillty value can glve misleading results. Under these clrcumstances, It Is preferable to express the permeablilty In terms of the permeablity k; of Individual discontinultirs where

$$
\begin{equation*}
k_{j}=\frac{k}{n} \tag{40}
\end{equation*}
$$

n Is the number of discontInultles uhlch Intersect the test cavity of length L.

The va I ue of n can be est Imated from the borehole core log and, assuming that the discontinulty opening (e In equation 33) remalns constant, the varlation In permeabl I lty along the borehole can then be estimated.

Before leaving thls question of permeabl lity testing It must be polnted out that the discussion which has been presented has been grossly slmpl lfed. This has been done dellberately since the literature dealing with this subject Is coplous, complex and confusing. A number of techniques, more sophisticated than those which have been described hero, are avallable for the ovaluatlon of permeabl lity but the authors bel leve that these are best left In the hands of experlenced speclalist consultants. The simple tests which have been described are generally adequate for highway stabllity and dralnage studies.

Measurement of rater pressure
The Importance of rater pressure In relation to the stabll Ity of slopes has been emphaslzed In several of the prevlous chapters. If a rel table estlmate of stabllity is to be obtalned or If the stab1 lity of a slope Is to be control led by dralnage, It Is essential that water pressures within the slope should be measured. Such measurements are most convenlently carrled out by plezometers instal led In boreholes.

A varlety of plezometer types Is aval lab le and the cholce of the type to be used for a partlcular Installation depends upon a number of practical considerations. A detalled dlscussion on thls mattor has been glven by Terzaghl and Peck(183) and only the most Important considerations wlll be summarized here.

The most Important factor to be consldered In choosing a plezometer Is the time lag of the complete installation. This is the t Ime taken for the pressure in the system to reach equ lll br 1 um after a pressure change and It depends upon the permeabl I Ity of the ground and the volume change assoclated with the pressure change. Open holes can be used for pressure measurement when the permeabllity ls greater than $10^{-4} \mathrm{~cm} / \mathrm{sec}$. but, for less permeable wound, the tlme lag Is too long. In order to overcane thls problem, a pressure messuring device or plezometer Is Installed In a sealed section of the borehole. The volume change within thls sealed section, caused by the operation of the plezoneter should be vrry smail In order that the response of the complete Installation to pressure changes In the surrounding rock should be rapld. If a device which requires a large volume change for Its operation Is used, the change In pressure induced by thls change In volume may glverlse to significant errors In measurement.

A simple probe for water leve l detection.

Some of the common types of plezometer are br lef ly discussed below:
a) Open plezoneters or observation wells

As dlscussed above, open ended cased holes can be used to measure water pressure \ln rock or sol I In whlch the permeab 1 IIty Is greater than about $10^{-4} \mathrm{~cm} / \mathrm{sec}$. Al I that Is required for these measurements Is a devlce for measuring water level In the borehole. A very simple probe conslsting of a palr of electrlcal contacts housed In a brass walght Is 11 lustrated In the margin sketch. When the contacts touch the water, the resistance of the electrical circult drops and thls can be measured on a standard "Avometer" or similar Instrument. The depth of water below the co1 lar of the hole ls measured by the length of cable and It Is convenlent to mark the cable In feet or meters for thls purpose. Portable water level Indicators, conslsting of a probe, a marked cable and a small resistance measuring Instrument, are avallable from Solltest Inc., 2205 Lee Street, Evanston, Illinols 60202, U.S.A.

b) Standplpe plezometers

When the permeabllity of the ground In whlch water pressure Is to be measured Is less than $10^{-4} \mathrm{~cm} / \mathrm{sec}$. , the time lag involved In using an open hole will be unacceptable and a standplpe plezometer such as that I II ustrated In FIgure 6.13 shou I d be used. Thls device consists of a perforated tip which Is sealed Into a sectlon of borehole as shown. A smal l dlameter standplpe passIng through the seals al lows the water level to be measured by means of the same type of water level indicator a s described above under open hole plezometers. Because the volume of water within the standplpe is small, the response time of thls plezometer Installation wlll be adequate for most applicatlons likely to be encountered on a highway.

An advantage of the stendplpe plezometer Is that, because of the small diameter of the standplpe, a number can be instal led In the same hole. Hence different sectlons can be sealed off along the length of the borehole and the water pressure within each sectlon monltored. Thls type of Installation Is Important when It ls suspected that water flow ls conflned to certaln layers within a rock mass.

C) Closed hydraullc plezometers

When the permeability of the ground falls below about $10^{-6} \mathrm{~cm} /$ sec., the time lag of open ended boreholes or standplpe plezometers becomes unacceptable. For example, approx Imately 5 days would be required for a typlcal standplpo plezometer to reach an acceptable state of equilibrium after a change of water pressure In a rock or sol I mass having a permeablility of $10^{-7} \mathrm{~cm} / \mathrm{sec}$.

An Improved time lag can be obtalned by using a closed hydrauIfc plezometer such as that descrlbed by Blshop, et al(184). Thls type of plezometer Is completely filled with de-alred water and Is sultab le for measurement of smal l water pressures. Such plezometers are generally used for pore pressure measurement during construction of embankments or dams where they can be Installed durlng construction and left In place.

Note: The two sealing layers $O f$ fin8 sand and silt above the piesometer section can be replaced by bentonite pellets which form agel in contact with water and form an effective seal. Psiletized bentonite is available connercially as "Peltomite" from Rocktest Ltd., Lambert, Quebec, Canada.

Figure 6.13: Typical standpipe piezometer Installation details.

d) Alr actuated plezometers

Installation of a plastic tube standpipe piezometer in a drill hole.

A very rapld response time can be achleved by use of alr actuated piezometers in which the water pressure Is measured by a balancing alr pressure acting agalnst a dlaphragn. As shown In Flgure 6.14, an alr valve allows alr to escape when the air and water pressures on elther side of the dlaphragn are equal(185). A commerclally avallable alr plezometer Is Illustrated In Figure 6.15. Slmlar types of Instrument are avallable from other suppliers and these devices are playing an Increasingly Important role in slope stabllity studles.

o) Electrical ly Indicating plezometer

An almost Instantaneous response time is obtained from plezometers In which the deflection of a dlaphragm as a result of water pressure is measured electrically by means of some form of straln gauge attached to the dlaphragn. A wide varlety of such devices is aval lable conmerclally and they are Ideal for measuring the water pressure within the test cavity during a pumping test(172). Because of thelr relatively high cost and because of the possiblilty of electrical faults, these plezometers are less satisfactory for permanent installation in boreholes.

General comments

A frequent mistake made by engineers or geologists In examining rock or soll slopes is to assume that groundwater is not present If no seepage appears on the slope face, In many cases, the seepage rate may be lower than the ovaporation rate and hence the slope surface may appear completely dry and yet there may be water at significant pressure withln the rock mass. Remember that It Is water pressure and not rate of flow wh 1 ch 1 s responsible for instability in slopes and it Is essentlal that measurement or calculation of thls water pressure should form part of site Investigation for stabllity studies. Drainage, which Is discussed In Chapter 12, Is One of the most effective and most economical means avallable for Improving the stabllity of highway slopes. Ratlonal dosign of dralnage systems is only possible If the water flow pattern within the rock mass is understood and measurement of permeability and water pressure provides the key to thls understanding.

Selected references on permeability and water pressure measurement.
159. BRAWNER, C.O. The influence and control of groundwater in open pit mining. Proc. 5th Canadian Symposium on Rock Mechanics, Toronto, 1968.
160. DOBRY. R. and ALVAREZ, L. Seismic failures of Chilean taillngs dams. Proc. American Society of Civil Enginsers. Vol. 93, No. SM6, 1967.
161. CASACRANOE, L. and MACIVER, B.N. Design and construction of tailings dams. Proc. Ist Symposium on Stability for Open Pit Mining, Vancouver, 1970.
162. SEED, H.B. and LEE, K.L. Liquefaction of saturated sands during cyclic loading. Journal Soil Mechanics and Foundation Div. Proc. ASCE. Vol. 92, No. SM6, 1966, pages 105-134.
163. DAVIS. S.N. and DE WIEST, R.J.N. Hydrogeology. John Wiley δ Sons, New York b London, 1966, 463 pages.
164. MORCENSTERN, N.R. The influence of groundwater on stability. Proc. 1st Symposizm on Stability of Gpen Pit Mining, Vancouver, 1970. Published by AlME, New York, 1971.
165. SCHEIDEGGER,A.E. The physicsof flow through porous media. MacMillan, New York, 1960.
166. CEOERGREN, H.R. Seepage, drainage and flow nets. John Wiley and Sons, New York, 1967.
167. DAVIS, S.N. Porosity and permeability of natural materials, in Flow through porous media, edited by R. de Wiest, Academic Press, London, 1969, pages 54-89.
168. HUITT. J.L. Fluid flow in simulated fracture. doumal American Inst. Chemical Eng. Vol. 2, 1956, pages 259-264.
169. SNOW, D.T. Rock fracture spacings, openings and porosities. Journal Soit. Mech. Foundation Div. Proc. ASCE. Vol. 94, 1968, pages 73-91.
170. LOUIS. c. A study of groundwater flow in jointed rock and its influence on the stability of rock masses. Doctorate thesis, University of Karlsruhe. 1967, (in German). English translation Imperial College Rock Mechanic8 Research Report No, 10, September, 1969. 90 pages.
171. SHARP, J.C. Fluid flow through fissured media. Ph.D. Thesis, University of London (Imperial College), 1970.
172. MAINI, Y.N. In situ parameters in jointed rock their measurement and interpretation. Ph.D. Thesis, University of London (Imperial College), 1971.
173. HAAR, M.E. Grounduater and Seepage, McGraw Hill Co., New York, 1962.

[^3]175. KARPLUS. W.J. Analog Simulation. Solution of Field Problems. McGraw Hill Co., New York, 1968.
176. MEEHAN, R.L. and MORGENSTERN, N.R. The approximate solution of seepage problems by a simple electrical analogue method. Civil Engineering andPubiic Works Review. Vol. 63. 1968, pages 65-70.
177. ZIENKIEWICZ, O.C., MAYER. P. and CHEUNG, Y.K. Solution of anisotropic seepage by finite elements. Journal Enq. Mech. Div., ASCE, Vol. 92, EM1.1966, pages 111-120.
178. SHARP, J.C. MAINI, Y.N. and HARPER, T.R. Influence of groundwater on the stability of rock masses. Trans. Institute Mining and Matallurgy, London. Vol. 81, Bulletin No. 782, 1972, pages A13-20.
79. HORSLEV, M.S. Time lag and soil permeability in groundwater measurements. U.S. Corps of Engineers haterways Experiment Station, Bulletin No. 36, 1951, 50 pages.
180. LAMBE, T.V. Soiz testing for engineers. John Wi Icy E Sons, New York, 1951.
181. MUIR WOOD, A.H. In-situ testing for the Channel Tunne 1. Proc. Conference on in-situ investigations in soils and rocks, London, 1969. Published by the Institution of Civil Engineers, London, 1969. pages 79-86.
182. HARPER,T.R. and ROSS-BROWN. D.H. An inexpensive durable borehole packer. Imperial College Rook Mechanics Research Report No. D24, 1972, 5 pages.
183. TERZAGHI, K. and PECK, R. Soil Mechanic8 in Engineering Practice. John Wiley \mathcal{E} Sons inc., New York, 1967, 729 pages.
184. BISHOP, A.W., KENNARD, H.F. and PENMAN, A.D.H. Pore* pressure observations at Selset Dam. Proc. Conference on Pore Pressure and Suction in Soils. Butterworth, London, 1960, pages 91-102.
185. WARLAM, A.A. and THOMAS, E.U. Measurement of hydrostatic uplift pressure on splliway weir with air piezometers. Instmments and apparatus for soil and rock mechanics. American Society for Testing end Materials Special Technical Publication No. 392, 1965, pages 143-151.

Chapter 7 Plane failure.

Introduction

A plane failure is a comparatively rare sight in rock slopes because it is only occasionally that al lt the geometrical conditions required to produce such a failure occur in an actual slope. The wedge type of failure, considered in Chapter 8, is a much more general case and many rock slope engineers treat the plane fallure as a special case of the more general wedge failure analysis.

While this is probably the correct approach for the experienced slope designer who has a wide range of design tools at his disposal, It would not be right to ignore the two-dimensional case in this general discussion on slope fai lure. There are many valuable lessons to be learned from a consideration of the mechanlcs of this simple failure mode and it is particularly useful for demonstrating the sensitivity of the slope to changes in shear strength and groundwater conditions - changes which are less obvious when dealing with the more complex mechanics of a three-dimensional slope failure.

General conditions for plane failure
In order that sliding should occur on a single plane, the following geometrical condltions must be satisfied:
a. The plane on which sliding occurs must strike parallel or nearly parallel (within approximately $\pm 20^{\circ}$) to the slope face.
b. The fal lure plane must "daylight" in the slope face. This means that its dip must be smal ler than the dip of the slope face, i.e. $\psi_{f}>\psi_{D}$.
C. The dip of the failure plane must be greater than the angle of friction of this plane, i.e. $\psi_{\rho}>\varnothing$.
d. Release surfaces whlch provide negi igible resistance to sliding must be present in the rock mass to define the lateral boundar les of the slide. Alternatively, failure can occur on a failure plane passing through the convex "nose" of a slope.

In onalyzing two-dimensional slope problems, it is usual to consider a slice of unit thickness taken at right angles to the slope face. Thls means that the area of the sliding surface can be represented by the length of the surface visible on a vertical section through the slope and the vol ume of the sllding block is represented by the area of the figure representing thls block on the vertical section.

Plane fal lure analysis
The geometry of the slope considered in this analysis is defined in Figure 7.1. Note that two cases must be considered.
a. A slope having a tension crack in its upper surface.
b. A slope with a tenslon crack in its face.

The transition from one case to another occurs when the tension crack colncides with the slope crest, i.e. when

$$
\begin{equation*}
z / H-\left(1-\cot \psi_{f} \cdot \operatorname{Tan} \psi_{D}\right) \tag{41}
\end{equation*}
$$

Figure 7. la : Geometry of slope with tension crack in upper slope surface.

Figure 7. lb : Geometry of slope with tension crack in slope face.

The following assumptions are made in this analysis:
a. Both sllding surface and tension crack strike parallel to the slope surface.
b. The tension crack is vertical and is filled with water to a depth Z_{W}.
c. Water enters the sllding surface along the base of the tension crack and seeps along the sliding surface, escaping at atmospheric pressure where the sliding surface daylights in the slope face. The pressure distribution induced by the presence of water In the tension crack and along the sliding surface is I I lustrated in Figure 7.1.
d. The forces W (the weight of the sliding block), U (upI lft force due to water pressure on the slid ing surface) and V (force due to water pressure in the tension crack) al lact through the centrold of the sliding mass. In other words, it is assumed that there are no moments which would tend to cause rotation of the block and hence fallure is by sliding only. While this assumption may not be strictly true for actual slopes, the errors introduced by ignoring moments are smal I enough to neglect. However, in steep slopes with steeply dipping discontinuities, the possibility that toppling failure may occur should be kept in mind.
e. The shear strength of the sliding surface is defined by cohesion c and a friction angle@ which are related by the equation $\tau=c+\sigma \tan \varnothing$ as discussed on page 2.4. In the case of a rough surface having a curvilinear shear strength curve, the apparent cohesion end apparent friction angle, defined by a tangent to the curve are used. This tangent should touch the curve at a normal stress value which corresponds to the normal stress acting on the failure plane. In this case, the analysis is only valid for the slope height used to determine the normal stress level. The normal stress acting on a failure surface can be determined from the graph given in Figure 7.2.
f. A slice of unit thickness is considered and it is assumed that release surfaces are present so that there is no resistance to sliding at the lateral boundaries of the failure.

The factor of safety of this slope ls calculated in the same way as that for the block on an inclined plane considered on page 2.9. In this case the factor of safety, given by the total force resisting sllding to the total force tending to induce sliding, Is

$$
\begin{equation*}
F=\frac{c A+\left(W \cdot \cos \psi_{p}-v-V \cdot \sin \psi_{p}\right) \tan \phi}{w \cdot \sin w_{p}+V \cdot \cos \psi_{p}} \tag{42}
\end{equation*}
$$

where, from Figure 7.1:

Figure 7.2 Normal stress acting on the failure plane in a rock slode.

$$
\begin{align*}
& A=(H-z) \cdot \operatorname{cosec} w_{p} \tag{43}\\
& U=\frac{1}{2} \gamma_{W} \cdot z_{W}(H-z) \cdot \operatorname{Cosec} w_{p} \\
& V=\frac{1}{2} \gamma_{W} \cdot z_{W}^{2} \tag{+5}
\end{align*}
$$

For the tension crack In the upper slope surface (FIgure 7.1a)

$$
\begin{equation*}
w=\frac{1}{2} \gamma H^{2}\left(\left(1-(z / H)^{2}\right) \cot \%_{0}-\cot \psi_{F}\right) \tag{A6}
\end{equation*}
$$

and, for the tension crock In the slope face (Figure 7.1b)

$$
\begin{equation*}
W=\frac{1}{2} \gamma H^{2}\left((1-z / H)^{2} \cot \%(\cos M \cdot \tan M-1)\right] \tag{47}
\end{equation*}
$$

When the geometry of the slope and the depth of vator In the tenslon crock are known, the calculation of a tutor of safety Is a simple enough matter. However, it is sometlmes necessary to compare a range of slope geometries, rater depths and the Influence of different shear strengths. In such cases, the solution of equat lons (42) to (47) can become rather tedious. In order to simplify the calculations, equation(42)can be rearranged In the following dimenslonless form:

$$
\begin{equation*}
F=\frac{(2 c / \gamma H) \cdot P+\left(p \cdot \cot \psi_{p}-P(P+S)\right) \tan \rho}{\rho+R \cdot S \cot \psi_{p}} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
P \cdot(/-z / H) \cdot \operatorname{cosec} \%_{p} \tag{49}
\end{equation*}
$$

When the tension crack Is In the upper slope surface:

$$
\begin{equation*}
\varphi=\left(\left(1-(2 / H)^{2}\right) \cot w_{p}-\cot w_{F}\right) \sin w_{p} \tag{50}
\end{equation*}
$$

When the tenslon crack Is In the slope face:

$$
\begin{gather*}
Q \cdot\left((1-z / H)^{2} \cos \psi_{p}\left(\cos \psi_{\rho} \cdot \tan \psi_{\rho}-1\right)\right) \tag{51}\\
R=\frac{\gamma_{W}}{\gamma} \cdot \frac{z_{w}}{z} \cdot \frac{z}{H} \tag{52}\\
S=\frac{z_{w}}{z} \cdot \frac{z}{H} \sin \psi_{\rho} \tag{53}
\end{gather*}
$$

The ratios P, Q, R and S are all dimensionless which means that they depend upon the geometry but not upon the $\mathbf{s l} 20$ of the slope. Hence, In cases where the cohesion $c=0$, the factor of safety Is Independent of the size of the slope. The Important princlple of dimensionless grouping, lliustrated In these equetlons, is a useful tool In rock engineering and - xtonslvo use will be made of this princlple In the study of medge and circular fal lures.

In a-der to facilitate the epplication of those equat lons to practical problems, values for the ratios P, Q and S, for a range of slope geometriss, ere presented In graphical form In Figure 7.3. Note that both tenslon crack positions are included In the graphs for the ratio Q and hence the values of Q may be determined for any slope contiguration without hoving first to check cm the tenslon crack position.

Figure 7.36: Values of the ratio S for various geometries.

Note:
Dashedines refer to tension crack
 in slope face.

Figure 7.3c: Value of the ratio Q for varlous slope geometries.

One point to keep in mind when using these graphs is that the depth of the tension crack Is always measured from the top of the slope as illustrated in Figure 7.10.

Consider the example in which a 100 ft . high slope with a face angle $V_{f}=60^{\circ}$ is found to have a bedding plane runnl ng through it at a dip $\psi_{p}=30^{\circ}$. A tension crack occurs 29 ft . behind the crest of the slope and, from an accurately drawn cross-section of the slope, the tension crack is found to have a depth of 50 ft . The unit weight of rock $\mathcal{\gamma}=160 \mathrm{lb} / \mathrm{f}+{ }^{3}$, that of water Is $\mathcal{T}_{W}=62.5 \mathrm{lb} / \mathrm{ft}^{3}$. Assuming that the cohesive strength of the bedding plane $c=1,000 \mathrm{lb} / \mathrm{ft} .^{2}$ and the friction angle $\varnothing=30^{\circ}$, f Ind the inf I uence of water depth $Z_{\boldsymbol{w}}$ upon the factor of safety of the slope.

The values of P and Q are found from Figure 7.3, for $z / H=0.5$ to be:

$$
P=1.0 \text { and } Q=0.36
$$

The values of R (from equation 52) and S (from Flgure 7.3b), for a range of values of $z_{\boldsymbol{w}} / \bar{z}$, are:

z_{W} / Z	1.0	0.5	0
R	0.195	0.098	0
S	0.26	0.13	0

The value of $2 \mathrm{c} / \mathrm{\gamma H}^{H}=0.125$
Hence, the factor of safety for diferent depths of water in the tension crack, from equation 48, varies as fol lows:

Z_{W} / Z	1.0	0.5	0
	0.77	1.10	1.34

These values are plotted in the graph in the margin and the sensitivity of the slope to water in the tension crack is obvious. Simple analyses of thls sort, varying one parameter at a time, can be carried out in a few minutes and are useful aids to decision making. In the example considered, It would be obviously worth taking steps to prevent water from entering the top of the tension crack. In other cases, it may be found that the presence of water In the tension crack does not have a signiflcant influence upon stabllity and that other factors are more important.

Graphical analysis of stabillty
As an alternative to the analytical method presented above, some readers may prefer the following graphical method:
a. From an accurately drawn cross-section of the slope, scale the lengths H, X, D, A, \mathbf{z} and $\boldsymbol{Z}_{\boldsymbol{w}}$ shown In Figure 7.4 s .
b. Calculate the forces W, V and U from these dimensions by means of the equations given In Figure 7.4a. Also calculate the magnitude of the cohesive force A.c.
c. Construct the force diagram Illustrated In Figure 7.4b as follows:

Figure 7.4a: Slope geometry end equations for calculating forces acting on slope.

Figure 7.4b: Force diagrem for tmo-dimensional slope stablilty nelysis.
i) Draw a vertical IIne to represent the weight W of the sliding wedge. The scale should be chosen to suit the size of the drawing board used.
ii) At right angles to the line representing W, draw a I Ine to represent the force V due to water pressure in the tension crack.
1ii) Measure the angle ψ_{ρ} as shown In Figure 7.4b and draw a line to represent the uplift force U due to water-pressure on the sliding surface.
iv) Project the Ilne representing U (shown dashed In Flgure 7.4D) and, from the upper extremity of the Ilne representing W, construct a perpendicular to the projection of the U I ine.
v) From the upper extremity of the U I ine, draw a I Ine at an angle \varnothing to Intersect the II ne from W to the projection for the U line.
vi) The length f In Figure 7.46 represents the frictlonal force which resists sliding along the fal lure plane.
vil) The cohesive resist I ng force A.c can be drawn parallelto f. Al though thls step is not essential, drawing A.c on the force diagrams ensures that there is no error in converting to and from the various scales which may have been used In this analysis since it provides a visual check of the magnitude of A.c.
vili) The length of the line marked S on the force diagram represents the total force tend Ing to induce sliding down the plane.
(x) The factor of safety F of the slope Is given by the ratio of the lengths (f + A.c) to S.

An example of the application of this graphical technlque will be given later in this chapter.

Influence of groundwater on stablity
In the preceding discussion it has been assumed that it is only the water present in the tension crack and that along the fallure surface which influences the stabl lity of the slope. This Is equivalent to assuming that the rest of the rock mass Is impermeable, an assumption which is certainly not always justifled. Consideration must, therefore, be given to water pressure distribution other than that upon which the analysis so far presented Is based.

The current state of knowledge in rock englneer ing does not permit a precise definition of the groundwater flow patterns in a rock mass. Consequently, the only possibi lity open to the slope designer is to consider a number of realistic extremes in an attempt to bracket the range of possible factors of safety and to assess the sensitivity of the slope to variations In groundwater conditions.

a. Dry slopes

The simplest case which can be considered is that In which the slope Is assumed to be completely drained. In practical terms, this means that there is no water pressure In the tension crack or along the sllding surface. Note that there may be moisture In the slope but, as long as no pressure is generated, it will not Influence the stabllity of the slope.

Under these conditions, the forces V and U are both zero and equation (42) reduces to:

$$
\begin{equation*}
F=\frac{c \cdot A}{W \cdot \sin \psi_{p}}+\cot \%_{p} \cdot \tan \phi \tag{54}
\end{equation*}
$$

Alternatively, equation (48) reduces to:

$$
\begin{equation*}
F=\frac{2 c}{\gamma H} \cdot \frac{P}{\phi}+\cot w \rho \cdot \operatorname{Tan} \phi \tag{55}
\end{equation*}
$$

b. Water in tension crack only

A heavy rain storm after a long dry spell can result in the rapod bul Id -up of water pressure in the tension crack which w ll offer little resistance to the entry of surface flood water unless effective surface drainage has been provided. Assuming that the remainder of the rock mass is relatively impermeable, the only water pressure which will be generated during and mmmediately after the rain will be that due to water in the tension crack. In other words, the uplift force $U=0$.

The up II ft force U con Id al so be reduced to zero or near I y zero if the failure surface was impermeable as a result of clay filling. In either case, the factor of safety of the slope is given by

$$
\begin{equation*}
F=\frac{c \cdot A+\left(W \cdot \cos \mu_{p}-V \cdot \sin \mu_{p}\right) \tan \phi}{w \cdot \sin \psi_{p}+V \cdot \cos M_{p}} \tag{56}
\end{equation*}
$$

or, alternatively

$$
F=\frac{2 c / \gamma H \cdot P+(Q \cdot \cot \%-R S) \tan \theta}{\varphi+R S \cdot \cot W_{p}}
$$

c. Water in tension crack and on sliding surface

These are the conditions which were assumed in deriving the general solution presented on the preceding pages. The pressure distribution along the sliding surface has been assumed to decrease linearly from the base of the tension crack to the intersection of the fail lure surface and the slope face. This water pressure distribution is probably very much simpler than that which occurs in an actual slope but, since the actual pressure distribution is unknown, this assumed distribution is as reasonable as any other which could be made.
it is possible that a more dangerous water pressure distribudion could exist if the face of the slope became frozen in winter so that, instead of the zero pressure condition which has been assumed at the face, the water pressure at the face would be that due to the full head of water in the slope. Such extreme water pressure conditions may occur from time to time and the slope designer should keep this posslbi lity In mind. However, for general slope design, the use of this water pressure distribution would result in a excessively conservative

A mountain top tension crack
above a Zarge landslide.
slope and hence the trlangular pressure distribution used In the general analysts is presented as the basis for normal slope design.
d. Saturated slope with heavy recharge

If the rock mass is heavi 1 y fractured so that $i+$ becomes re 1 atively permeable, a groundwater flow pattern simllar to that which would develop in a porous system could occur (see Figure 6.9 on page 6.11). The most dangerous condit ions wh ich wou Id develop in this case would be those given by prolonged heavy rain.

Flow nets for saturated slopes with heavy surface recharge have been constructed and the water pressure distr lbutlons obtained from these flow nets have been used to calculate the factors of safety of a variety of slopes. The process involved is too tedious to include In this chapter but the results can be summari zed in a general form. It has been found that the factor of safety for a permeable slope, saturated by heavy ra $i n$ and subjected to surface recharge by continued rain, can be approx imated by equation (42) (or 48), assuming that the tension crack is water-filled, i.e. $z_{W}=z$.

In view of the uncertainties associated with the actual water pressure distributions which could occur in rock slopes subjected to these conditions, there seems little point in attempting to refine this analysis any further.

Critical tension crack depth

In the analysis which has been presented, it has been assumed that the position of the tension crack is known from its visible trace on the upper surface or on the face of the slope and that its depth can be established by constructing an accurate cross-sect ion of the slope. When the tension crack position is unknown, due for example, to the presence of soil on the top of the slope, it becomes necessary to consider the most probable position of a tenslon crack.

The influence of tension crack depth and of the depth of water in the tension crack upon the factor of safety of a typical slope is Illustrated In Figure 7.5 (based on the example considered on page 7.8).

When the slope Is dry a- nearly dry, the factor of safety reaches a minimum value which, in the case of the example considered, corresponds to a tenslon crack depth of 0.42 H . This critical tension crack depth for a dry slope can be found by minimizing the right hand side of equation (54) with respect to z/H. This gives the critical tension crack depth as:

$$
\begin{equation*}
z_{C} / H=/-\sqrt{\cot \psi_{r} \cdot \operatorname{Tan} \psi_{o}} \tag{58}
\end{equation*}
$$

From the geometry of the slope, the corresponding position of the tension crack is:

$$
\begin{equation*}
b_{c} / H=\sqrt{\cot \psi_{f} \cdot \cot \psi_{p}}-\cot w_{f} \tag{59}
\end{equation*}
$$

Critical tension crack depths and locations for a range of dry slopes are plotted In Figure 7.6.

Figure 7.5 influence of tension crack depth and of depth of water in the tension crack upon the factor of safety of a slope. (Slope geometry and material properties as for example on page 7.8).

Figure 7.6a: Critical tension crack depth for a dry slope.

Figure 7.6b: Critical tension crack location for a dry slope.

A small tension crack on the bench of a slate quarry indicating the onset of instability. Photograph by Dr. R. E. Goodman.

A large tension crack on an open pit mine bench In which considerable horizontal and vertical movement has occurred.

Figure 7.5 shows that, once the water level $Z_{\neq y}$ exceeds about one quarter of the tension crack depth, the factor of safety of the slope does not reach a minimum unt|| the tension crack Is water-filled. In this case, the minimum factor of safety Is given by a water-fi lled tension crack which is coincident with the crest of the slope ($b=0$).

It is most important, when considering the inf I uence of water in a tension crack, to consider the sequence of tension crack formation and water fllling. Fleld observatlons suggest that tension cracks usually occur behind the crest of a slope and, from Figure 7.5, it must be concluded that these tenslon cracks occur as a result of movement in a dry or nearly dry slope. If this tension crack becomes water-filled as a result of a subsequent rain storm, the Influence of the water pressure wi I I be in accordance with the rules laid down earlier In this chapter. The depth and location of the tension crack are, however, Independent of the groundwater conditions and are defined by equations (58) and (59).

If the tension crack forms during heavy rain or if it is located on a pre-existing geological feature such as a vertical joint, equations (58) and (59) no longer apply. In these circumstances, when the tens lon crack position and depth are unknown, the only reasonable procedure is to assume that the tenslon crack ls coincident with the slope crest and that it is waterfilled.

The tenslon crack as an indicator of instabillty
Anyone who has examined excavated rock slopes cannot have failed to notice the frequent occurrences of tension cracks In the upper surfaces of these slopes. Sane of these cracks have been visible for tens of years and, In many cases, do not appear to have had any adverse Influence upon the stabl I lty of the slope. It Is, therefore, interesting to consider how such cracks are formed and whether they can given any indication of slope instablility.

In a series of very detailed model studies on the fal lure of slopes In jointed rocks, Barton(91) found that the tension crack was generated as a result of small shear movements within the rock mass. Although these Individual movements were very smal I, their cumulative effect was a signlflcant displacement of the slope surfaces - sufficient to cause separation of vertical joints behlnd the slope crest and to form "tension" cracks. The fact that the tension crack Is caused by shear movements In the slope is important because It suggests that, when a tension crack becomes visible in the surface of a slope, it must be assumed that shear failure has inltiated within the rock mass.

It is impossible to quantlfy the serlousners of this failure since it is only the start of a very complex progressive falla ure process about which very little ls known. It is quite probable that, in some cases, the Improved dralnage resulting from the opening up of the rock structure and the interlocking of individual blocks within the rock mass could glva rise to an Increase in stablility. In other cases, the Initlation of fallure could be followed by a very rapld decrease in stablilyy with a consequent fallure of the slope.

In summary, the authors recommend that the presence of a tension crack should be taken as an indication of potential instability and that, In the case of an important slope, this shou I d signal the need for detailed Investigation into the stability of that particular slope.

Critical failure plane incllnation
When a through-golng discontinuity such as a bedding plane exists in a slope and the inclination of this discontinulty is such that it satisfies the conditions for plane failure defined on page 7.1, the fallure of the slope will be controlled by this feature. However, when no such feature exists and when a fal lure surface, if it were to occur, would fol low minor geological features and, In some places, would pass through Intact material, how could the inclination of such a failure path be determined?

The first assumption which must be made concerns the shape of the failure surface. In a soft rock slope or a soll slope with a relatively flat slope face $\left(\psi_{f}<45^{\circ}\right)$, the tal lure surface would have a circular shape. The analysls of such fallure surfaces will be dealt with In Chapter 9.

In steep rock slopes, the fal lure surface is almost planar and the inclination of such a plane can be found by partial differentiation of equation (42)with respect to $\%_{\rho}$ and by equating the resulting differential to zero. For dry slopes this glves the critical failure plane inclination $Z_{p c}$ as

$$
\begin{equation*}
\psi_{p c}-\frac{1}{z}\left(\psi_{f}+\varnothing\right) \tag{60}
\end{equation*}
$$

The presence of water In the tension crack wi I l cause the fallure plane inclination to be reduced by up to 108 and, In view of the uncertainties associated with this fallure surface, the added complication of including the Influence of groundwater is not considered justified. Consequently, equation (60) can be used to obtain an estimate of the critical failure plane incllnation in steep slopes which do not contain through-going discontinuity surfaces. An examole of the apolication of this equation in the case of chalk cliff failure will be given later in thls chapter.

Figure 7.7: Two-dimensional model used by Barton(91) for the study of slope fal lure In jointed rock masses.

Geometry of under-cut slope

Reinforcement of a slope

Influence of undercutting the toe of a slope
It Is not unusual for the toe of a slope to be undercut, either intentionally by excavation or by natural agencies such as the weather I ng of under lying strata or, in the case of sea cliffs, by the action of waves. The influence of such undercutting on the stability of a slope is important in many practical situations and an analysis of thls stability is presented here.

In order to provide as general a solution as possible, it is assumed that the geometry of the slope is that i I l ustrated in the margin sketch. A previous failure is assumed to have left a face inclined at \mathcal{Z}_{f} and a vertical tension crack depth $z_{/}$. As a result of an undercut of ΔM, inclined at an angle ψ_{O}, a new fallure occurs on a plane inclined at ψ_{ρ} and involves the formation of a new tension crack of depth z_{2}.

The factor of safety of this slope is given by equation(42) but it is necessary to modify the expression for the weight terms as follows:

$$
\begin{equation*}
\left.W=\frac{1}{2} \gamma\left(\left(H_{2}^{2}-z \frac{2}{2}\right) \cot \right)_{0}-\left(H_{1}^{2}-z_{j}^{2}\right) \cot \psi_{f}+\left(H_{1}+H_{2}\right) \Delta N\right) \tag{61}
\end{equation*}
$$

Note that, for $\%_{0}>0$,

$$
\begin{equation*}
\Delta M=\left(H_{Z}-H_{1}\right) \operatorname{Cot} \psi_{0} \tag{62}
\end{equation*}
$$

The critical tension crack depth, for a dry undercut slope, is given by

$$
\begin{equation*}
z_{2}=\frac{c \cdot \cos \phi}{\gamma \cos 2_{p} \cdot \sin \left(\psi_{p}-\phi\right)} \tag{63}
\end{equation*}
$$

The critical failure plane inclination is

$$
\begin{equation*}
\psi_{p}=\frac{1}{2}\left(\phi+A \operatorname{ctan} \frac{H_{2}^{2}-z \xi}{\left(H_{l}^{2}-z_{i}^{2}\right) \operatorname{Cot} \psi_{f}-\left(H_{1}+H_{2}\right) \Delta N}\right) \tag{04}
\end{equation*}
$$

The application of this analysis to an actual slope problem is presented at the end of this chapter.

Reinforcement of a slope
When it has been established that a particular slope is unstable, it becomes necessary to consider whether it is possible to stabl I lze the slope by drainage or by the app I I cat lon of external loads. Such external loeds may be applied by the installatlon of rock bolts or cables anchored into the rock mass behind the failure surface or by the construction of a waste rock berm to support the toe of the slope.

The factor of safety of a slope with external loading of magnitude T, inclined at an angle8 to the failure plane as shown in the sketch opposite, is approximated by:

$$
\begin{equation*}
F=\frac{c A+\left(W \cdot \cos \psi_{\rho}-U-V \cdot \sin \psi_{p}+T \cdot \cos \theta\right) \tan \phi}{W \cdot \sin \psi_{p}+V \cdot \cos \psi_{p}-T \cdot \sin \theta} \tag{65}
\end{equation*}
$$

This equation Is correct for the condition of IImlting equilibrium ($F=1$) but there are certain theoretical problems in using it for other values of F. These problems are discussed fully in Appendix 3 at the end of this book,

Analysis of fallure on a rough plane

As discussed in Chapter 5, most rock surfaces exhibit a nonlinear relationship between shear strength and effective normal stress. This relationship may be defined by Ladanyl and Archembault's equation (21 on page 5.5) or by Barton's equation (26 on page 5.7). In order to apply either of these equations to the analysis of failure on a rough surface plane It Is necessary to know the effective normal stress σ acting on this plane.

Consider the slope geometry illustrated In Flgure 7.1. The effective normal stress acting on the failure surface can be determined from equations (43) to (47) and is given by:

$$
\begin{equation*}
\sigma=\frac{W \cdot \cos W_{p}-U-V \cdot \sin Y_{p}}{A} \tag{66}
\end{equation*}
$$

Alternatively, from equations (49) to (53)

$$
\begin{equation*}
\sigma=\frac{\gamma H}{2 P}\left(\rho \cot \psi_{p}-R(P+S)\right) \tag{67}
\end{equation*}
$$

Having determined the value of σ, the shear strength τ of the failure surface is calculated from equation (21) or (26) The factor of safety of the slope ls given by modifying equations (42) and (48) as fol lows:

$$
\begin{equation*}
F=\frac{\tau \cdot A}{w \cdot \sin \psi_{p}+\gamma \cdot \cos \psi_{p}} \tag{68}
\end{equation*}
$$

or

$$
\begin{equation*}
F=\frac{2 P \cdot Z}{\gamma H\left(Q+R \cdot S \cdot \cot \not Z_{\rho}\right)} \tag{69}
\end{equation*}
$$

The application of these equations is best Illustrated by means of a practical example. Consider a slope defined by $H=100$ ft., $z=504 t_{, ~, ~} \psi_{f}=60^{\circ}$ and $\psi_{p}=30^{\circ}$. The unlt weight of the rock $\gamma=160 \mathrm{lb} / \mathrm{ft}^{2}$ and mat of water $\gamma_{\mathrm{w}}=62.5 \mathrm{l} \mathrm{b/ft.?}$. Two cases wll be considered:

Case 1: A drained slope In which $z_{W}=0$
Case 2: A slope with a water filled tension crack def Ined by $z_{W}=z$.

The values given by substitution in equations (43) to (46) and (49), (504 (52) and (53) are as fo I lows:

$$
\begin{aligned}
\text { Case 1: } & A=100 f+{ }^{2} / f+\ldots, U=0, V=0, W=571350 \mathrm{lb} / \mathrm{ft} . \\
& P=1.00, Q=0.36, R=0 \text { and } S=0 .
\end{aligned}
$$


```
\(W=577350 \mathrm{lb} / \not t \mathrm{t} ., \mathrm{P}=1.00, \mathrm{Q}=0.36, \mathrm{R}=0.195\) and S
\(=0.25\)
```

Substitution in equations (66) and (67) givas the effective normal stress on the fallure plane as $\sigma=5,000 \mathrm{lb} / \mathrm{ft}^{2}$. for Case 1 and σ. 3,049 lb/ft? for Car. 2.

Assume that the shear strength of the surface Is def ined by Barton's equation (26 on page 5.7) $¥ 1$ th $\varnothing=30^{\circ}$, JRC $=10$ and $\sigma J=720,000, \mathrm{lb} / \mathrm{ft}$. Substitution of these values gives τ. $6.305 \mathrm{lb} / 4 \mathrm{t}$. ${ }^{2}$ for Case 1 and $Z=4,155 \mathrm{lb} / 4+{ }^{2}$ for Case 2 . Substituting these values of \mathcal{Z} Into equations (68) or (69) gives:

```
Case 1: F . 2.16
Case 2: F=1.17
```

The application of this analysis to a practical example will be discussed later in this chapter.

Practical example number 1
Stabllity of porphyry slopes In a Spanlsh open pit mine
In order to asslst the mine plannling engineers In designing an extension to the Atalaya open plt operated by Rio TInto Espanola In southern Spaln, an analysls was carried out on the stablilty of porphyry slopes forming the northern slde of the plt (left hand side of the pit In the photograph reproduced In Figure 7.8). A summary of thls analysis ls presented In this example.

At the time of this design study (1969), the Atalaya plt was 260 m deep and the porphyry slopes, inclined at an overall angle of approximately 45° as shown in Figure 7.9 appeared to be stable. The proposed mine plan called for deepening the plt to in excess of 300 m and required that, If at all posslbie, the porphyry slopes should be left untouched. The problem, therefore, was to declde whether these slopes would remaln stable at the proposed minIng depth.

Since no slope fallure had taken place In the porphyry slopes of the Atalaya plt, deciding upon the factor of safety of the existing slopes posed a difficult problem. Geological napping and shear testing of discontinulties In the porphyry provided a useful gulde to the possible fallure modes and the range was too wide to permit the factor of safety to be determined with a reasonable degree of confidence.

Consequently, It was decided to use a technique simllar to that employed by Salamon and Munro(186) for the analysls of coal pl I lar fal lures In South Africa. This method Involved col lectIng data cm slope heights and slope angles for both stable and unstable slopes In porphyry In order to establish a pattern of slope behavlour based upon full scale slopes. The data on unstable slopes had to be col lected from other open pit mines In the Rio Tinto area In which fallures had occurred In porphyry8 judged to be slmilar to those In the Atalaya plt. The col lected slope helght versus slope angle data are plotted In Flgure 7.10 .

Figure 7.8: Rio Tinto Espanola's Atalaya open pit mine.

Figure 7.9: Section through - typical porphyry slope in the Atalaya open pit at Rio Tinto in Spain.

In order to establish the theoretical relationship between slope height and slope angle, the fol lowing assumptions are made:
a. Because the geological mapping had failed to reveal any dominant through-going structures which could control the stabllity of the slopes In question but had revealed the presence of a number of intersecting joint sets, it was assumed that failure, If it were to occur, would be on a composite planar surface inclined at $\psi_{\rho}=1 / 2\left(\psi_{f}+\phi\right)$ as defined by equation (60) on page 7.16.
b. From the shear strength data a friction angle $\varnothing=35^{\circ}$ was chosen as the starting point for this analysls.
c. Because of the presence of underground workings, the porphyry slopes were assumed to be fully dralned and it was assumed that tension cracks would occur In accordance with the critical conditions defined In equat Ion (58) on page 7.12. It was assumed that these tension cracks would occur In al llopes, including those with factors of safety In excess of unlty, and the typlcal fal lure geometry is illustrated In Figure 7.9 .

The factor of safety for a dry slope is def ined by equation (55) on page 7.10 which, for the purposes of thls analysis, can be rearranged In the following form:

$$
\begin{equation*}
H=\frac{2 c \cdot \rho}{\gamma \rho(F-\cot \psi \cdot \operatorname{Tan} \phi)} \tag{70}
\end{equation*}
$$

Solving equations (60 h (58) (49) and (50) for a range of slope angles, assuming $\gamma=2.95$ tonnes $/ \mathrm{m}^{3}$, gives:

$\nVdash f$	ψ_{ρ}	$2 / H$	P	Q	H
85	60.0	0.610	0.450	0.238	$1.28 \mathrm{c} /(F=0.404)$
80	57.5	0.474	0.624	0.268	$1.58 \mathrm{c} /(F=0.446)$
70	52.5	0.311	0.668	0.261	$2.25 \mathrm{c} /(F=0.537)$
60	47.5	0.206	1.077	0.221	$3.30 /(F=0.641)$
50	42.5	0.123	1.300	0.159	$5.54 \mathrm{c} /(F=0.764)$
40	37.5	0.044	1.572	0.007	$152 \mathrm{c} /(F=0.913)$

The problem now is to find a value for the cohesion c which glves thr best fit for a limiting curve ($F=1$) passing through the slope height/slope angle polnts for unstable slopes. The tro polnts at $y_{f}=61^{\circ}$ and 66° and $H=40 \mathrm{~m}$ and 35 m respectively are ignored In this curve fitting since they were identified as individual bench failures on through-goling discontinulties and they would not, therefore, belong to the same famlly as the other slopes.

A number of trial calculatlons showed that the best fit for the $F=1$ curve to the seven failure points shown In Figure 7.10 Is given by a cohesive strength $c=14$ tonnes/m*

The shear strength relationship defined by $c=14$ tonnes $/ \mathrm{m}^{2}$ and $\phi=35^{\circ}$ has been plotted in Figure 7.11 which also shows peak and residual strength values determined by shear testing at lm peri a l College. Note that the shear strength relatlonship determined by back analysis appears to fall between the peak and resldual shear strength values determined In the laboratory.

Figure 7.10: Relationship between slope heights and slope angles for porphyry slopes in the Rio Tinto area, Spain.

Care should, however, be exercised not to draw too many conclusions from this figure since the range of normal stresses In the slope fal lures which were back analyzed was approximately 20 to 50 tonnes $/ \mathrm{m}^{2}$. The scatter of test results In th is stress range ls too large to al low a more detal led analysis cf the results to be carried out.

Figure 7.11 illustrates an Important historical polnt In slope stabl I Ity analysis since It rrf lects the shear testing phl loso phy of the late 1960s. The Importance of test I ng at very low normal stress levels and of the non-IInearlty of the shear strength curve had not been recognl zed at that time and shear tests were frequently corried out at stress levels which were several times higher than the normal stresses acting In actual slopes. Thls philosophy was carrled over from underground rock mechanlcs end from studies of Intact rock fracture In which testlng was usually carrled out at high normal stresses. As discussed In Chapter 5, studles by Patton, Barton, Ladanyl and Archembault and others have contributed greatly to our understandlng of shear strength behavior at low normal stresses and there Is no doubt that the Rlo Tinto analysis, presented on the preceding pages, would follow slightly different Ilnes If It were to be reported today. An example of an analysis using a curvilinear shear strength relationship ls given later in this chapter. Incldentally, the authors feel that, In splte of the crude analysls carrled out on the Rlo TInto slopes, the englneering decisions summerized In Flgure 7.10 are still sound and the overall approach is stillvalld.

Flgure 7.11: Shear strength characterlst les of porphyry from Rio Tinto.

Figure 7.12: Small scale failures of individual benches are not usually significant in open pit mining unless they cause disruption of haul roads.

Figure 7.13: The open pit designer is concerned primarily with minimising the risk of overall slope failure.
(Kennecott Copper photograph published by Broadbent δ Armstrong ${ }^{187}$).

Substitution of the value of $c=14$ tonnes $/ m^{2}$ into the relationships for the slope height H, listed after equation (70), gives the curves for different factors of safety which have been plotted In Figure 7.10. By counting the number of polnts falling between factor of safety increments, it is possible to construct the histogram reproduced in the lower part of Figure 7.10. This histogram confirms that the seven unstable slopes are clustered around a factor of safety $F=1$ while the stable slopes show a peak between 1.3 and 1.4.

From a general consideration of the anticipated working IIfe of the slope and of the possible consequences of slope failure during the mining operations, It was concluded that a factor of safety of 1.3 would be acceptable for the porphyry slopes in the Atalaya pit and, hence, the design curve presented to the mine planning engineers Is that shown as a heavy line in Figure 7.10. This curve shows that, for the slope heights In excess of 250 m under consideration, the factor of safety changes very I litle for a change In slope angle. It was, therefore, concluded that the proposed deepening of the pltwou I d not decrease the overall stab1 I Ity of the porphyry slopes, provided that no major changes In rock mass properties or dralnage conditions were encountered In this deepening process.

Before leaving this example it is Important to polnt out that this analysis deals with the stabllity of the overall plt slope and not with possible failures of individual benches. In a large pit such as the Atalaya pit, it would be totally uneconomic to attempt to analyze the stability of each bench and, in any case, smal l bench failures are not particularly important In large pits provided that they do not influence haul roads. On the other hand, a tal lure of the wedge $1 /$ lustrated in FIgure 7.13, Involving approximately 20.000 tonnes/meter of face (from equat lon (46) assuming $\gamma=2.95$ tonnes $/ \mathrm{m}^{3}$) would obviously represent a very serious problem which has to be avoided.

Practical example number 2

InvestIgation of the stability of a limestone quarry face

Figure 7.14 shows a hillsidellmestone quarry In the Mendlp Hi I Is in England, owned and operated by the Amalgamated Roadstone Corporation*. Thls photograph was taken in 1968 after a slope failure had occurred during a perlod of exceptionally heavy rain.

In 1970, it was decided to expand the quarry facillties and this involved the instal lation of new plant on the floor of the quarry. In view of the large horizontal movements of material which had occurred in the 1968 slope fallure (as shown in Figure 7.14), It was considered that an Investigation of the stabillty of the remainder of the slope was necessary. Thls example gives a summary of the most Important aspects of this stability study, ful 1 detalis of which have been publ ished by Roberts and Hoek (148).

The 1968 failure occurred after a week or more of steady soakI ng rain had saturated the area. Thls was followed by an except lonally heavy downpour which flooded the upper quarry
floor, filling an existing tenslon crack in the slope crest. The geometry of the failure is illustrated in Figure 7.15. As seen in Figure 7.14, the failure ls basically two-dimenslonal, the sliding surface being a bedding plane striking parallel to the slope crest and dipping into the excavation at 20°. A vertical tension crack existed 41 ft . behind the slope crest at the time of the failure.

In order to provide shear strength data for the analysis of the stability of the slope under which the new plant was to be instal led, it was decided to analyze the 1968 failure by means of the graphlcsl method described in Figure 7.4 on page 7.9. Because the dimensions of the proposed slope were reasonably simI lar to those of the 1968 fal I ure, it was assumed that a I Inear shear strength relationship, defined by a cohesive strength and angle of frlctlon, would be sufficiently accurate for this analysis.

Assuming a rock density of 0.08 tons $/ f t^{9}\left(16010 / f+t^{3}\right)$ and a water density of 0.031 tons $/ 4+{ }^{3}\left(62.4 \mathrm{lb} / \mathrm{ft}^{3}\right.$?);
$\begin{aligned} & \text { Weight of sliding mass } W=1 / 2 \gamma\left(X H-D_{Z}\right)=404.8 \text { tons } / \mathrm{ft} . \\ & \text { tlor izontal water force } V=1 / 2 \gamma_{W} \cdot z_{W}^{2}=65.5 \text { tons } / \mathrm{ft} . \\ & \text { Uplift of water force } U=1 / 2 \gamma_{W} \cdot z_{W} \cdot A=110.8 \text { tons } / \mathrm{ft} .\end{aligned}$
From the force diagram, Figure $7.16(a)$, the shear strength mobilized In the 1968 fallure can be determined and this is plotted In Figure 7.16(b).

From an examination of the surface upon which fallure had taken place in 1968, it was concluded that the friction angle was probably $20^{\circ}+5^{\circ}$. This range of friction angles and the associated cohesive strengths, shown in Figure $7.16(b)$ are used to determine the stablilty of the overall slopes in thls Illustrative example.

Having established the range of shear strengths mobilized In the 1968 failure, these values were now used to check the stabil ity of the 210 ft . high slopes under which the new plant was to be Installed. The geometry of the slope analyzed is illustrated in Figure 7.17 which shows that, in order to provlde for the worst possible comblnation of clrcumstances, it was assumed that the bedding plane on which the 1968 slide had occurred daylights in the toe of the slope.

Figure 7.18 shows typical force diagrams for dry and saturated slopes, assuming a slope face angle $\psi_{f}=50^{\circ}$ and a friction angle $\varnothing=25^{\circ}$. A range of such force diagrams was constructed and the factors of safety determined from these constructions are plotted in Figure 7.19. In this figure the full I ines are for a friction angle $\varnothing=20^{\circ}$, considered the most probable value, while the dashed lines define the influence of a 5° variation on elther side of this angle.

It Is clear from Figure 7.19 that 58° slopes are unstable under the heavy rainfall mnditlons which caused the slopes to become saturated In 1968. Dralnage of the slope, particularly the control of surface water which could enter the top of an open tension crack, is very beneficial but, since it cannot be guaranteed that such drainage could be fully effective, It was recom-

Figure 7.14: Air photograph of Amalgamated Roadstone Corporation's Batts Combe limestone quarry in Somerset, England. showing details of the 1968 slope failure (Roberts and Hoek ${ }^{148}$).

b. Saturated slope

Figure 7.18: Force diagrams for design of overall quarry slopes.
mended that the slope should also be benched back to an overall angle of 45°.

Figure 7.19: Factor of safety for dry and saturated slopes with different face angles.

Practical example number 3
Choice of remedial measures for critical slopes
When a slope above an Important highway or railroad or above a cl vil engineer Ing structure such as a dam is found to be potentlally unstable, an urgent decision on the ef fective and economical remedial measures which can be employed is frequently required. The following example lllustrates one of the methods which may be adopted in arriving at such a decision. Al though this example is hypothetical, It is based upon a number of actual problems with which the authors have been concerned.

The first stage In the analysis is obviously to check that the slope is actual iy unstable and whether any remedial measures are requlred. Sometimes it is obvious that a potential failure problem exists because failures of limited extent have already taken place in part of the slope = this was the case In the quarry stability problem dlscussed in practical example 2. In other cases, a suspicion may have been created by fal lures of adjacent slopes or even by the fact that the eng Ineer in charge of the slope has recently attended a conference on slope stab II ity and has become al armed about the stab I I ity of the slopes In hls charge. Whatever the cause, once a doubt has been cast upon the stab1 I Ity of an important slope, It Is essent Ial that

Figure 7.20b: Plan of proposed benching of lower slopes in Batts Combe quarry. Slopes are to be benched back to an overall slope of 45° with pre-splitting of final faces. Surface drainage on upper quarry floor and provision of horizontal drain holes in bench faces if piezometers indicate high sub-surface water levels.

Figure 7.20a: Batts Combe quarry plan in 1970 showing the location of the 1968 slope failure which destroyed part of the conveyor system (see Figure 7.14).

Its overal I stablilty should be Investigated and that appropriate remedial measures should be implemented If these are found to be necessary.

Conslder the following examples:
A 60 m high slope has an overal I face angle of 50°, made up from three 20 m benches with 70° faces. The slope is in reasonably fresh granite but several sets of steeply dipping joints are visible and sheet Jointing similar to that described by Terzaghi(17) Is evident. The slope is In an area of hlgh rainfall intensity and low seismiclty. An acceleration of 0.08 g has been suggested as the maximum to which this slope is likely to be subjected. A smal ilide in a nearby slope has caused attentlon to be focused onto thls partlcular slope and concern has been expressed in case a major sl Ide could occur and cou I d result in serious damage to an Important clvil engineering structure at the foot of the slope. The rock slope engineer called In to examine the problem Is required to assess both the short and the long term stability of the slope and to recommend appropriate remedial measures, shou I d these prove necessary. No previous geological or engineering studies have been carried out on this slope and no boreholes are known to exist In the area.

Faced with this problem and having no geological or englneering data from which to work, the first task of the rock slope engineer is to obtaln a representative sample of structural geology data in ader that the most likely fallure mode can be established. Tlme would not usually allow a drilling program to be mounted, even If drl II Ing equipment and operators of the required standard were resdlly available in the area. ConsequentI y, the col tection of structural data would have to be based upon surface mapping as described In Chapter 4, page 4.1. In some circumstances, thls mapping can be carrled out using the photogrammetric techniques described on page 4.5.

It Is assumed that structural mapping Is carried out and that the following geometrical and structural features have been Identified:

Feature	dip ${ }^{\circ}$	dlp direction ${ }^{\circ}$
Overal I slope face	50	200
Indlvidual benches	70	200
Sheet joint	35	190
Joint set J1	80	233
Joint set J2	80	040
Jolnt set J3	70	325

The stereoplot of this data Is given In Figure 7.21 and a frictlon clrcle of 30° Is Included on this plot. Note that, although the three joint sets provide a number of steep release surfaces which would al low blocks to separate from the rock mass, none of their lines of Intersection, ringed in Figure 7.21, fall within the zone designated as potentlally unstable. On the other hand, the sheet jolnt great circle passes through the zone of potentialinstabllity and, since its dip direction Is close to that of the slope face, it can be concluded that the most llkely fal lure mode is that Involving a planar sl Ide on the sheet joint surface In the direction Indicated In Figure 7.21.

Figure 7.21: Stefeoplot of geometrical and geological data for example number 3.

Figure 7.22: Geometry assumed for two-dimensional analysis of the slope defined in Figure 7.21.

The stability check carried out in Figure 7.21 suggests that both the overal I slope and the indlv idual benches are potentially unstable and it is therefore clearly necessary to carry out further checks on both.

Because of the presence of the three steeply dipping jolnt sets, the possibility of a tension crack forming in the upper surface of the slope must be regarded as high. One possible failure mode is that illustrated as Model lin Figure 7.23. This theoretical model assumes that a tension crack occurs In the dry state in the most critical position and that this crack Is filled to depth $\boldsymbol{z}_{\boldsymbol{w}} \boldsymbol{w}$ ith water during a period of exceptionally heavy rain. A slmultaneous earthquake subjects the slope to an acceleration of 0.08 g . The factor of safety of this slope Is given by equation(71) in Figure 7.23 derived from equation (42) on page 7.3 with provision for the earthquake loading.

In deriving equation (71), it has been assumed that the acceleration Induced by an earthquake can be replaced by an equivalent static force of $\boldsymbol{\alpha} W$. Thls is almost certainly a gross over-simplification of the actual loading to which the slope Is subjected during an earthquake $(188,189)$ but it is probable that it tends to over-estimate the loading and hence it errs on the side of safety. In view of the poor qual ity of the other Input data In this problem, there is no justification for attempting to carry out a more detailed analysis of earthquake loading.

Since no boreholes exist on this hypothetical site, the subsurface groundwater conditions are totally unknown. To al low for the possibi lity that substantial subsurface water may be present, an alternative theoretical model is proposed. This is illustrated as Model II In Figure 7.23 and, again this model incl udes the ef fect of earthquake loading.

Having decided upon the most likely fallure mode and having proposed one or more theoretical models to represent thls failure mode, the rock engineer is now in a position to substitute a range of possible values into the factor of safety equations in order to determine the sensitivity of the slope to the different conditions to which it is likely to be subjected.

Summarizing the available input data:
Slope height
Overal I slope angle
Bench face angle
Bench height
Fallure plane angle
Rock density
Water density
Earthquake acceleration

H	$=60 \mathrm{~m}$
$\psi_{\boldsymbol{f}}$	$=50^{\circ}$
\mathcal{W}_{f}	$=70^{\circ}$
H	$=20 \mathrm{~m}$
\boldsymbol{Z}_{p}	$=35^{\circ}$
γ	$=2.6$ tonnes $/ \mathrm{m}^{3}$
γ_{w}	$=1.0$ tonnes $/ \mathrm{m}^{3}$
a	$=0.08 \mathrm{~g}$

Substituting In equations(71) and (72:
Overall slopes Model I

$$
\begin{equation*}
F=\frac{80.2 c+\left(1850-40.1 z_{w}-0.207 z_{w}^{2}\right) \operatorname{Tan} \phi}{1529+0.410 z_{w}^{2}} \tag{74}
\end{equation*}
$$

$$
\begin{equation*}
F=\frac{c A+\left(W\left(\operatorname{Cos} \psi_{p}-\alpha \operatorname{Sin} \psi_{p}\right)=U=v \operatorname{Sin} \psi_{p}\right) \operatorname{Tan} \phi}{W\left(\operatorname{Sin} \psi_{p}+\alpha \operatorname{Cos} \psi_{p}\right)+v \operatorname{Cos} \psi_{p}} \tag{71}
\end{equation*}
$$

Where

$$
\begin{equation*}
z=H\left(1-\sqrt{\operatorname{Cot} \psi f \cdot \operatorname{Tan} \psi_{p}}\right) \tag{58}
\end{equation*}
$$

$$
A=(H-z) \operatorname{Cosec} \psi_{p}
$$

$$
W=\frac{1}{2} \gamma H^{2}\left(\left(1-(z / H)^{2}\right) \operatorname{Cot} \psi_{p}-\operatorname{Cot} \psi_{f}\right)
$$

$$
\begin{equation*}
U=\frac{1}{2} Y_{W} \cdot Z_{W} \cdot A \tag{44}
\end{equation*}
$$

$$
\begin{equation*}
v=\frac{1}{2} \gamma_{w} \cdot z_{w}^{2} \tag{45}
\end{equation*}
$$

$$
\begin{equation*}
F=\frac{c A+\left(W\left(\operatorname{Cos} \psi_{p}-\alpha \operatorname{Sin} \psi_{p}\right)-U\right) \operatorname{Tan} \phi}{W\left(\operatorname{Sin} \psi_{p}+\alpha \operatorname{Cos} \psi_{p}\right)} \tag{72}
\end{equation*}
$$

Where

$$
\begin{equation*}
U=\frac{1}{4} \gamma_{w} \cdot H_{w}^{2} \operatorname{cosec}{ }_{P} \tag{73}
\end{equation*}
$$

Figure 7.23: Theoretical models for example number 3.

Overall slopes Model II

$$
F=\frac{104.6 c+\left(2132-0.436 H_{W}^{2}\right) \operatorname{Tan} \phi}{1762}
$$

Individual benches Model |

$$
\begin{equation*}
F=\frac{17.6 c+\left(287.1-8.8 z_{w}-0.287 z_{w}^{2}\right) \tan \phi}{237.3+0.410 z_{w}^{2}} \tag{76}
\end{equation*}
$$

Individual benches Model II

$$
\begin{equation*}
f=\frac{34.9 c+\left(428.0-0.436 H_{w}^{2}\right) \operatorname{Tan} \varnothing}{353.7} \tag{77}
\end{equation*}
$$

One of the most useful studies which can be carried out with the ald of equations (74) to (77) is to find the shear strength which would have to be mobllized for failure of the overall slope or for the individual benches. Figure 7.24 gives the results of such a study and the numbered I ines on this plot represents the following conditions:

```
1 - Overall slope, Model I, dry, zw}=0
2- Overall slope, Model I, saturated, zw=z=14 m.
3-Overal I slope, Model I I, dry, HW}=0
4-Overall slope, Model I I, saturated, }\mp@subsup{H}{N}{}=H60\textrm{m}
5- Individual bench, Model'I, dry, zw
6- Individual bench, ModelI, saturated, }\mp@subsup{z}{w}{}=z=9.9 m
7-Individual bench, Model I'I, dry, Hw}=0
8 - Individual bench, Model II, saturated,&,= H=20 m.
```

The reader may feel that a consideration of all these possibilities is unncessary but it Is only coincidental that, because of the geometry of thls particular slope, the shear strength val ues found happen to fal I reasonably close together. In other cases, one of the conditions may be very much more critical than the others and it would take a very experienced slope engineer to detect this condition without going through the calculations required to produce Figure 7.24. In any case, these calculations should only take about one hour with the aid of a calculator and this is a very reasonable investment of tlme when I lves and property may be in danger.

The el I iptical figure in Figure 7.24 surrounds the range of shear strengths which the authors consider to be reasonable for partially weathered granite. These values are based on the plot given in Figure 5.17 on page 5.32 and on experience from working with granltes. Note that a high range of friction angles has been chosen because experience suggests that even heavily kaolinized granites (polnt 11 in Flgure 5.17) exhibit high friction values because of the angular nature of the mineral grains.

It is clear from Flgure 7.24 that simultaneous heavy rain and earthquake loading could cause the shear strength required to maintain stabllity to rise to a dangerous level. Considering the rapidity with which granite weathers, particularly In tropical environments, with a consequent reduction in available cohesive strength, these results suggest that the slope is un-

Figure 7.24: Shear strength mobllized for failure of slope considered in practical example number 3.
safe and that steps should be taken to Increase its stability.
Four basic methods for improving the stabillty of the slope can be considered. These methods are the following:
a. Reduction of slope helght.
b. Reduction of slope face inclination.
C. Drainage of slope.
4. Reinforcement of slope with bolts and cables.

In order to compare the effectiveness of these different methods, it is assumed that the sheet joint surface has a cohesive strength of 10 tonnes $/ \mathrm{m}^{2}$ and a friction angle of 35°. The increase In factor of safety for a reduction In slope helght, slope angle and water level can be found by altering one of these variables at a time in equations (71) and (722 The Influence of reinforcing the slope is obtained by modifying these equations as in equations (78) and (79) on page 7.39.

Figure 7.25: Comparison between alternative methods of increasing stability of overall slope considered in example 3.

Model I

$F=\frac{c A+\left(w\left(\cos \psi_{p}-\alpha \sin \psi_{\rho}\right)-v-v \sin \psi_{\rho}+T \cos \theta\right) \tan \theta}{W\left(\sin \psi_{p}+\alpha \cos \psi_{\rho}\right)+v \cos \psi_{\rho}-T \sin \theta}$
Model 11
$F=\frac{c A+\left(w\left(\cos \psi_{\rho}-\alpha \sin \psi \rho\right)-U+T \cos \theta\right) \tan \phi}{W\left(\sin \psi \rho+\alpha \cos \psi_{\rho}\right)-T \sin \theta}$
Where T Is the total reinforcing force applied by bolts or cables and θ ls the inclination of thls force to the normal to the fallure surface, as illustrated in the sketch opposite.

Flgure 7.25 gives the results of the comparison between the different methods which could be consldered for Increasing the stabl I lty of the overal I slope. In each case, the change Is expressed as a percentage of the total range of the variable $(H=$ $60 \mathrm{~m}, \psi_{y}=50^{\circ}, z_{w} / z=1, \mathrm{H}_{W}=60 \mathrm{~m}$) except for the reinforcing load. This is expressed as a percentage of the weight of the wedge of rockbeingsupported. In calculating the effect of the relnforcement, it has been assumed that the cables or bolts are Installed horlzontally, l.e. $6=55^{\circ}$. The Influence of the inclination θ upon the relnforcing load required to produce a factor of safety of 1.5 Is shown In the graph given In the margin.

Figure 7.25 shows that reduction In slope height (Iines 1 and 2) only begins to show signlficant benefits once the helght reduction exceeds about 40\%. In many practical situations, a helght reduction of this magnltude may be totally impossible, particularly when the slope has been cut Into a mountainside. In any case, once one has reduced the slope height by 40\%, more than 60% of the mass of the material forming the unstable wedge will have been removed and it would then be worth remov Ing the rest of the wedge and the remains of the problem. Obviously. thls solution would be very expensive but It dors have the merit of providing a permanent solution to the problem.

Reducing the angle of the slope face can be very effective, as shown by I ine 3, but it can also be very dangerous as shown by line 4. Thls wide varlation In response to what is normal iy regarded as a standard method for improving the stablilty of a slope raises a very interesting problem which deserves more detailed examination.

Equations (58) and (46) (Figure 7.23) both contain the term Cot诲 and hence both z and W are decreased as the slope face angle ${ }^{*}$ Is reduced. A reduction In tension crack depth reduces both water forces U and V and the final result ls a dramatic increase In factor of safety for a decrease In slope face incl Ination. Note that, If the tenslon crack occurs before the slope is flattened, the tenslon crack 2 wlll remaln unaltered at 14 m and the water forces U and V will remain at thelr maximum values. Under these conditions the factor of safety will still be Increased for a reduction In slope face inclination but not to the sane extent as shown by IIne 3 In Figure 7.25.
in the case of Model li In Flgure 7.23, It Is only the weight term which ls altered by the reduction in slope angle and,

Lined surface water diversion drain

because the uplift force term U Tan \varnothing Is greater than the cohesive force $c A$, the factor of safety actual ly reduces as the slope face is flattened. As the slope face angle approaches the failure plane angle, the thin sliver of material resting on the fal lure plane will be floated off by the excess water force U. Although many practical arguments could be put forward to show that this extreme behavior would be very unlikely, the example does illustrate the danger of indiscriminate alteration of the slope geometry without having first considered the posslble consequences. The practical conclusion to be drawn from this discussion is that, if Model II in Flgure 7.23 is representative of the conditions whichexist in an actual slope, partial flattening of the slope would achieve no useful purpose. The wedge of rock resting on the failure plane would have to be removed entirely if it was decided that flattening the slope was the only means to be used for Increasing the stability.

Drainage of the slope is probably the cheapest remedial measure which can be employed and, as shown In Figure 7.25, complete drainage, if this could be achieved, would increase the factor of safety to very nearly the required value. Unfortunate1 y, complete drainage can never be achieved and hence, In this particular slope, dralnage would have to be supplemented by some other remedial measure such as bolting In order to produce an acceptable level of safety. In any event, nothing would be lost by the provision of some drainage and the authors would recommend careful consideration of surface water control and also the drilling of horizontal drain holes to intersect the potential failure surface.

Reinforcing the slope by means of bolts or cables may create a useful illusion of safety but unless the job is done properly, the result could be llttle more than an illusion. In order to achieve a factor of safety of 1.5 , assuming the bolts or cables to be installed in a horizontal plane, the total force required amounts to about 500 tonnes per meter of slope length. In other words, the complete reinforcement of a 100 m face would require the installation of 500 one tonne capacity cables. Simultaneous drainage of the slope, even if only partially sucessful, would reduce this number by about half but reinforcing a slope of this size would obviously be a very costly process.

Considering all the facts now available, the authors would offer the following suggestions to the engineer responsible for the hypothetical slope which has been under discussion in this example:
a. Immediate steps should be taken to have a ser les of standplpe piezometers installed in vertical dril l holes from the upper slope surface or from one of the benches. The Importance of groundwater has been clearly demonstrated in the calculations which have been presented and it is essentlal that further information on possible groundwater flow patterns should be obtalned.
b. If diamond dri II ing equlpment of reasonable qual ity is readily avallable, the vertical holes for the plezometers should be cored. A geologlst should be present during this drllling program and should log the core immedlately upon removal from the core barrel. Parti-
cular attention should be given to establishing the exact position of the sheet joint or Joints so that an accurate cross-section of the slope can be constructed. If adequate diamond dri I I ing equipment Is not available, the plezometer holes may be percussion drilled.
c. As soon as the plezometers are in positlon and it has been demonstrated that groundwater is present in the slope, horizontal drain holes should be percussion drilled into the bench face to Intersect the sheet joints. These holes can be drillad at an initial spacing of about 10 m and their effect iveness checked by means of the plezometers. The hole spacing can be increased or decreased according to the water level changes observed in the plezomaters.
d. During this groundwater control program, a careful examination of the upper surface of the slope should be carried out to determine whether open tension cracks are present and whether any recent movements have taken place in the slope. Such movements would be detected by cracks in concrete or plaster or by displacements of vertlcal markers such as telephone poles. If the upper surface of the slope is coverd by overburden sol I, It may be very difficult to detect cracks and it may be necessary to rely upon the reports of persons resident on or close to the top of the slope.
e. Depending upon the findlngs of this examination of the upper slope surface, a decision could then be made on what surface drainage measures should be taken. If open tenslon cracks are found, these should be filled with gravel and capped with an impermeable material such as clay. The existence of such cracks shou I d be taken as evidence of severe danger and serious conslderation should be given to remedial measures In addition to dralnage.
f. Further geological mapping to confirm the geological structure of the slope, together with evidence on groundwater and tension cracks, would provide information for a revlew of the situation to decide upon the best means of permanent stab1 I ization, in addition to the drainage measures which have already been implemented.

Practlcal example number 4
Chalk cliff failure Induced by undercutting
Hutchinson(156) has descr lbed the details of a chalk cliff fallure at Joss Bay on the Isle of Thanet In England. Thls failure, induced by the undercutting action of the sea, provides an interesting illustration of the analysis of undercutting on page 7.17 and Hutchinson's data Is reanalyzed on the following pages.

The failure is Illustrated in the photograph reproduced in Figure 7.26 and a cross-sectlon, reconstructed from the paper by Hutchinson, is given In Figure 7.27. Apart from a thin capping of overburden and the presence of a few f I int bands, the chalk

Figure 7.26: Chalk cliff failure at Joss Bay, Isle of Thanet, England. (Photograph reproduced with permission of Dr. J.N.Hutchinson, imperial College, London.)

Figure 7.27:Cross section of chalk cliff failure at Joss Bay.

is reasonably unlform. Bedding is within one degree of horizontal and two major Jolnt sets, both almost vertical, are present. The cl lff Is parallel to one of these joint sets.

Measurement of water levels In well s near the coast together with the lack of face seepage caused HutchInson to conclude that the chalk mass In uhlch the fallure occurred could be taken as fully drained. Since the fallure does not appear to have been assoclated with a perlod of exceptlonally heavy rain, as was the case of the quarry failure discussed In example number 2, the posslblilty of a water-f II led tension crack Is considered to be remote and will not be Included In this analysis. The Interested reader Is left to check the Influence of verlous water pressure distributions upon the behavior of this slope.

Laboratory tests on samples taken from the cl Iff face gave a denslty of 1.9 tonnes $/ \mathrm{m}^{3}$ and a friction angle of about 42° for the peak strength and 30° for the residual strength. The cohesive strength ranged fran 13.5 tonnes $/ \mathrm{m}^{*}$ for the peak strength to zero for the residual strength. Since thls fallure can be classed as a fall In uhlch relatively little movement may have taken place before fal lure, as opposed to a sllde In uhlch the shear strength on the fallure plane Is reduced to Its residual value by movements before the actual fallure, there is considerable Justification for regarding the peak strength of the chalk as relevant for thls analysis. The purpose of this analysis ls to determine the shear strength moblilzed In the actual failure and to compare this with the laboratory values.

Summerlzing the avallable Input data:

H-slope helght ($H_{f}=H_{2}$)	15.4 m
$z_{1}=$ orlginal tension crack depth	6.8
z_{2} - new tension crack depth	7.8 m
AM- depth of undercut	0.5 m
$\%_{0}$ - Incilinatlon of undercut	0°
y_{1} - slope face angle	80°
ψ_{p} - fallure plane angle	67°

The effective friction angle of the chalk mass can be determined by rearranging equation (64) on page 7.17.

$$
\begin{equation*}
\phi=2 \psi_{p}-\operatorname{Arctan} \frac{H E-2 \xi}{\left(H_{j}^{2}-2 F\right) \cot \#_{f}-\left(H_{1}+H_{2}\right) \Delta M} \tag{80}
\end{equation*}
$$

Substltution gives $\varnothing=49.9$.
This value is slgnificantly higher than the friction angle of 42" measured on laboratory specimens but the inf I uence of the roughness of me actual fal lure surface must be taken Into account In comparing the results. The photograph reproduced In Flgure 7.26 shows this surface Is very rough Indeed and the difference between the laboratory value and the friction angle moblilized In the fal lure lo not surprising.

The cohesion moblilized at failure can be estimated by rearranging equation (63) on page 7.17:

$$
c=\frac{\gamma z_{2} \cos \psi_{\rho} \cdot \sin \left(\psi_{\rho}-\phi\right)}{\cos \phi}
$$

Normal stress 0 - tonnes $/ \mathrm{m}^{2}$

Figure 7.28: Relationship between shear strength and normal stress for chalk cliff failures analysed by Hutchinson ${ }^{156}$.

Figure 7.29: Tension crack depths and under-cut depths required for failure for different failure plane inclinations.

Substituting $z_{2}=7.8 \mathrm{~m}, \psi_{p}=67^{\circ}$ and $=49.9^{\prime}$ gives $c=2.64$ tonnes $/ m^{2}$. As would be expected, thls value ls considerably lower than the value of $c=13.3$ tonnes $/ m^{2}$ determined by laboratory shear tests on intact chalk.

Hutchinson's paper (Figure 9) contalns further data on the shear strength mobllized In chalk cliff fallures at Wellington Gardens and Paragon Baths and this data Is reproduced In Figure 7.28. The dashed curve, calculated from Ladanyl and Archambaultis equation (28 on page 5.22) Is a good fit to thls rock mass strength data and it wi|l be seen that the I Ine defined by $\tau=2.64+\sigma \operatorname{Tan} 49.9^{\circ}$ Is a tangent to the dashed curve. The ovidence presented In Figure 7.28 suggests that the values of cohesion and friction angle determined from the fal lure geometry Illustrated In FIgure 7.27 are reasonable.

Before leaving this example, It Is Instructive to consider what - lll happen to the Joss Bay cilff as the sea continues to undercut Its toe. The Input data for the next step In the fa $\mid=$ ure process is now as follows:

$H=$ slope helght ($\left.H_{1}=H_{2}\right)$	15.4 m
2\% $=$ original tension crack depth	7.8 m
$\mathbb{W}=$ slope face angle	67°
c = cohesive strength of chalk mass	2.65 tonnes/m*
$\phi=$ friction angle of chalk	$49.9{ }^{\circ}$

The unknowns In thls analysis are

```
zz}=\mathrm{ new tension crack depth
\mp@subsup{W}{0}{}=fallure plane angle
\DeltaM= depth of undercut
```

Since there are three unknowns and only two equations (63 and 64) the solution to this problem is obtained In the following manner:
a. From equatlon (63), the depth of the tension crack z_{2} Is calculated for a range of possible fallure plane angles ($\%$). The results of this calculation are plotted In Flgure 7.29. Since z_{2} must lle between z_{f} and H, FIgure 7.29 shows that the angle of the fal lure p I ane $\%_{\rho}$ must I is . between 67° and 56°.
b. Rearranging equation (64) gives:

$$
\begin{equation*}
\Delta M=\frac{\left(H^{2}-2 z^{2}\right) \cot W_{1}}{2 H}-\frac{H^{2}-2 \%}{2 H \operatorname{Tan}\left(2 W_{P}-\infty\right)} \tag{82}
\end{equation*}
$$

Sol v Ing for a range of correspond 1 ng val ues of $\%_{\rho}$ and \boldsymbol{z}_{2} glves the depth of the undercut shown In Figure 7.31.

It Is clear, from this figure, that a further cliff failure wil I occur when the undercut reaches a depth of approximately 0.9 m and that the corresponding failure plane angle will be $\psi_{0}=$ 60° and the new tension crack depth will be $z_{2}=10.2 \mathrm{~m}$. This new fallure geometry Is Illustrated In Figure 7.30.

The consequence of the cliff failure Illustrated In Figure 7.30 Is serlous for property owners on the cllff-top and, hence, the problem of stablilzation of the cllff face must be considered.

Figure 7.30: Predicted geometry of next cl iff failure due to undercuttIng.

Suggasted reinforcoment ofoliff face Wing $\mathrm{Em}_{\mathrm{m}} \mathrm{X}$ sm pattern of 5 m 20ng boits.

In the analysts which has been presented on the previous pages, it has been assumed that the chalk mass is dry. The presence of grounowater In the cilft, and pariticularly In the tension crack, would result in a serious reduction of face stability. Consequently, the first step in stablifing the slope is to ensure that It remains completely dralned. Attention to surface water to ensure that pools cannot collect near the slope crest is important and, if possible, horizontal drains should be oril led into the face to al low free drainage of any water which does find lts way into the rock mass which would be involved In a further failure.

In view of the fact that the stabil ity of this slope is so sensitive to undercutting, It Is tempting to suggest that this undercutting should be prevented by the prov Is ion of a concrete wal l along the toe of the cl i tf . in some cases this may be a practical solutlon but, in others, It may be Impossible to provide a secure foundation for such a wall.

Assuming that the protection of the toe of the cl if f I I l ustrated In Figure 7.50 is not possible, the only remaining alternative is to stablize the cliff face by reinforcement. Since the mass of material involved in any further failure wli l be relatively small - say 50 tonnes per meter of slope - the stabilizing force need not be very large.

Because of the di latant nature of the fallure process, It is suggested that the most effective reinforcement woul d be provided by fully grouted bolts or cables Ilghtly tensioned to ensure that al l contacts were closed. The onset of failure would induce tension in this reinforcement whlch would inhibit further failure. It is suggested that the load capacity of these bolts or cables should be approximately 25% of the mass

Geometry of failure and water pressure distribution
of the materlal which could fall and hence a pattern of 20 tonne bolts or cables, each 5 m long, installed \ln a 5 m grld, should provide adequate reinforcement for thls slope. If the chalk mass is closely jointed so that there is a danger of ravelling between washers, the pattern can be changed to a closer grid of lower capaclty bolts or, alternatlvely, corrosion resistant wire mesh can be clamped beneath the washers to reinforce the chalk surface.

Practical example number 5

Block sliding on clay layers

In a slope cut In a horizontal bedded sandstone/shale sequence, slidlng of blocks of material on clay seams occurs during periods of high rainfall. The clay seams have a high montmor 1II= onlte content and have been sllckensided by prevlous shear displacements, consequently very low residual shear strength values of $c=0$ and $\varnothing .10^{\circ}$ are consldered appropriate for the analysls of fallures(114).

The geometry of the block is illustrated In the margin sketch and it is assumed that the clay sew is horizontal.
H is the height of the block
\mathbb{H}^{4} is the angle of the face of the block
B is the distance of a vertical crack behind the crest of the slope
$\Sigma_{\boldsymbol{w}}$ is the depth of water in the tenslon crack
W is the weight of the block
V is the horizontal force due to water in the tension crack
U Is the upl 1 ft force due to water pressure on the base
The factor of safety of the block Is given by:

$$
\begin{equation*}
F=\frac{(W-U) \operatorname{Tan} \phi}{V} \tag{83}
\end{equation*}
$$

Where $\quad W=\gamma B H-1 / 2 \gamma H^{2} \cot \not \partial f$

$$
u=1 / 2 \gamma_{w} z_{w}(B+H \cot \not \partial f)
$$

γ is the density of the rock

$$
\gamma_{W} \text { is the density of water }
$$

Hence

$$
v=1 / 2 \gamma_{N} z_{N}^{2}
$$

$$
F=\frac{\left.\left(\left(2 B / H-\cot v_{r}\right)-\gamma_{w} / \gamma \cdot 2_{w} / H \cdot B / H\left(I+\cot \psi_{f}\right)\right)\right] \tan \phi}{\gamma_{w} / \gamma \cdot\left(z_{w} / H\right)^{2}}
$$

This equation has been solved for a range of values of B / H and Z_{W} / H, assuming $/ / /_{F} 80^{\circ}, \gamma_{W} / \gamma=0.4$ ond $\sigma=10^{\circ}$, and the results are plotted In Flgure 7.31.

The extreme rnsltlvity of the factor of safety to changes In water lovel depth in the tension crack is evident in this $\mathbf{f} \mathbf{i g}$ ure. This means that drainage, even if it is not very efficient, should do a great deal to improve the stability of the
slope. Horizontal holes through the base of the block may be the most economical dralnage system and the effectiveness of such drain holes can be chocked by monltoring the movement across a tenslon crack before and after drllling of the hole.

It must be emphaslzed that it is not the quantity of water which Is Important in this case but the pressure of water In the tenslon crack. Hence, in a low permabblllty rock mass, the drain may only produce a trickle of water but, If it has reduced the water pressure in the tension crack, it wll| stablI lize the slope.

As the ratio B / H decreases, the woight of the block W decreases and hence the factor of safety of the slope decreases, as shown In figure 7.31. This Is a factor over whlch there Is no control but It would be Interesting to relate the ratlo B / H to the frequency of observed block fallures.

An Increase In the block face angle yf results In an Increase In the wilght of the block and Improvement In slope stablility. This suggests that, for thls type of fallure, the face angle should be kept as steep as possible.

Chapter 7 references

186. SALAHON, M.D.G. and MUNRO, A.H. A study of the strength of coal pillars. J. South African Inst. Min. Metall. Vol.68, 1967, pages 55-67.
187. BROADBENT, C.D. and ARMSTRONG, C.W. Design and application of microseismic devices. Proc. 5 th Canadian Sympobium on Rook Mechonics. 1968.
188. IDRISS,I.H. and SEED, H.B. The response of earth banks during earthquakes. Report Soil Mech. and Bituminous Materials Lab. University of California. Berkley. April 1966.
189. FINN. W.O.L. Static and dynamic stresses in slopes Proc. let Congress, Intn2. Soc. Rock Mechanics, Lisbon. 1966. Vol. 2. page 167.

Chapter 8 Wedge failure.

Introduction

The previous chapter was concerned with slope failure resulting from sliding on a single planar surface dipping into the excavation and striking parallel or nearly parallel to the slope face. It was stated that the plane failure analysis is valid provided that the strike of the failure plane is within $\pm 20^{\circ}$ of the strike of the slope face. This chapter is concerned with the failure of slopes in which structural features upon which sliding can occur strike across the slope crest and where sliding takes place along the line of intersection of two such planes.

This problem has been extensively discussed in geotechnical literature and the authors have drawn heavily upon the work of Londe, John, Wittke, Goodman and others listedin references 190-200 at the end of this chapter. The reader who has examined this literature may have been confused by some of the mathematics which have been presented. It must, however, be appreciated that our understanding of the subject has grown rapidy over the past decade and that many of the simplifications which are now clear were not at all obvious when some of these papers were wrltten. The basic mechanics of failure are very simple but, because of the large number of variables involved, the mathematical treatment of the mechanics can become very complex unless a very strict sequence is adhered to in the development of the equations.

In this chapter, the basic mechanics of failure involving the sliding of a wedge along the line of intersection of two planar discontinuities are presented in a form which the non-specialist reader should find easy to follow. Unfortunatel y the very simple equations which are presented to illustrate the mechanics are of limited practical value because the variables used to define the wedge geometry cannot easily be measured in the field. Consequently, the second part of the chapter deals with the stability analysis in terms of the dips and dip directions of the planes and the slope face. In the transformation of the equations which is necessary in order to accommodate this information the basic mechanics becomes obscure but it is hoped that the reader should be able to follow the logic involved in the development of these equations.

In the chapter itself, the discussion is limited to the case of the sliding of a simple wedge such as that illustrated in Figure 8.1, acted upon by friction, cohesion and water pressure. The influence of a tension crack and of external forces due to bolts, cables or selsmic accelerations results in a significant increase in the complexity of the equations and, since it would only be necessary to consider these influences on the fairly rare occasions when the critical slopes are being examined, the complex solution to the problem has been presented in Appendix 2 at the end of the manual. The analytical treatment of this problem, given in Appendix 2, has been designed for use on a canputer or a programmable calculator. Once the reader has understood the basic mechanics of the problem, he or she should have no difficulty in using the complete solution given in Appendix 2.

Figure 8.1: A typical wedge failure involving sliding along the line of intersection of two planar discontinuities.

Figure 8.2 : Sets of intersecting discontinuities can sometimes give rise to the formation of families of wedge failures.
(Photograph reproduced with permission of Hr. K.M. Pare)

Deflnition of wedge geometry
Typical wedge fallures are lllustrated in Figures 8.1 and 8.2 which show, In the one case, the through-golng planar discontinulties which are normally assumed for the analytical treatment of thls problem and, in the other case, the wedge formed by sets of closely spaced structural features. In the latter case, the analytical treatment would stlli be based upon the assumption of through-golng planar features al though it would have to be realized that the definition of the dips and dip directions and the locations of these planes may present practica I dif ficultles. The fallure lllustrated In Flgure 8.2 would probably have Involved the falrly gradual ravel IIng of smal l loose blocks or rock and it is unlikely that thls fallure was assoclated with any violence. On the other hand, the fal I ure 1 II ustrated In Figure 8.1 probably Involved a falrly sudden fall of a single wedge which would only have broken up on 1 mpact and which would, therefore, constitute a threat to anyone working at the toe of the slope.

The geometry of the wedge, for the purpose of anal yzling the basic mechanics of sliding, Is defined In Figure 8.3. Note that, throughout this manual, the flatter of the two planes is called Plane A whl le the steeper plane 1s called Plane B.

As in the case of plane fallure, a condition of sliding is defined by $\psi_{f i}>\psi_{i}>\varnothing$, where $\psi_{f i}$ is the inclination of the slope face, measured in the view at right angles to the Ine of intersectton, and $\psi ;$ is the dip of the line of Intersection. Note the ${ }^{2} f$; would only be the same ask, the true dip of the slope face, If the dip direction of the lline of Intersection was the same as the dlp direction of the slope face.

Analysis of wedge fallure
The factor of safety of the wedge defined in Flgure 8.3, assumIng that silding ls resisted by friction only and that the friction angle ϕ is the same for both planes, is glven by

$$
\begin{equation*}
F=\frac{\left(R_{A}+R_{B}\right) \operatorname{Tan} \phi}{W \cdot \operatorname{Sin} \mathbb{Z}_{i}} \tag{85}
\end{equation*}
$$

where R_{A} and R_{B} are the normal reactions prov Ided by planes A and B as illustrated in the sketch opposite.

In order to find R_{A} and R_{B}, resolve horizontally and verticalty In the view along the line of Intersection:

$$
\begin{align*}
& R_{A} \cdot \sin \left(B-\frac{1}{2} \xi\right)=R_{B} \cdot \sin \left(B+\frac{1}{2} \xi\right) \tag{86}\\
& R_{A} \cdot \cos \left(\beta-\frac{1}{2} \xi\right)-R_{B} \cdot \cos \left(B+\frac{1}{2} \xi\right)=W \cdot \cos \psi i \tag{87}
\end{align*}
$$

Solving for R_{A} and R_{B} and odding:

$$
\begin{equation*}
R_{A}+R_{B}=\frac{w \cdot \cos \psi_{i} \cdot \sin \beta}{\sin \frac{1}{2} \xi} \tag{B8}
\end{equation*}
$$

Hence

$$
F=\frac{\sin \beta}{\sin \frac{1}{2} \xi} \cdot \frac{\operatorname{Tan} \phi}{\operatorname{Tan} \psi_{i}}
$$

In other words:

$$
\begin{equation*}
F_{w}=K . F_{p} \tag{90}
\end{equation*}
$$

where F_{W} is the factor of safety of a wedge supported by fr ictlon only. F_{p} is the factor of safety of a plane fallure In which the slope face is Incllned at $\mathscr{F}_{f i}$ and the fallure plane is Inclined at ψ_{j}.
K 1s the wedge factor which, as shown by equation (89), depends upon the Inc 1 uded angle of the wedge and upon the ang I e of +1 It of the wedge. Values for the wedge factor K, for a range of values of β and ξ are plotted in Figure 8.4.

As shown In the stereoplot given In Figure 8.3, measurement of the angles $\boldsymbol{\beta}$ and \boldsymbol{E} can be carrled out on the great circle, the pole of which is the polnt representing the line of intersectlon of the two planes. Hence, a stereoplot of the features which def ine the slope and the wedge geometry can provide al I the information required for the determination of the factor of safety . It should, however, be remembered that the case which has been dealt with is very simple and that, when different friction angles and the Influence of cohesion and water pressure are al lowed for, the equations become more complex. Rather than develop these equations in terms of the angles β and \mathcal{E}, which cannot be measured directly in the f 1 eld, the more complete analysis Is presented In terms of directly measurable dips and dip directlons.

Before leaving this simple analysis, the reader's attention is drawn to the Important Influence of the wedging action as the Included angle of the wedge decreases below 90°. The increase by a factor of 2 or 3 on the factor of safety determined by plane fallure analysis is of great practical Importance. Some authors have suggested that a plane fal lure anal ysis is acceptable for all rock slopes because it provides a lower bound solution which has the merit of being conservative. Figure 8.4 shows that thls solution is so conservative as to be totally uneconomic for most practical slope designs. It Is therefore recommended that, where the structural features which are likely to control the stabllity of a rock slope do not strike parallel to the slope face, the stabllity analysls should be carrled out by means of the three-dimensional methods presented In thls book or published by the authors ilsted in references 190 to 202 at the end of this chapter.

Wedge analysis including cohesion end rater pressure
Flgure 8.5 shows the geometry of the wedge which will be considered In the following analysls. Note that the upper slope surface in thls analysis can be obliquely Inclined with respect to the slope face, thereby removing a restr Ict Ion which has been present in all the stab1 lity analyses which have been discussed so far in thls book. The total helght of the slope, defined in Figure 8.5, 1 s the total difference in vertical elevation between the upper and lower extremit les of the line of intersection along which sliding 1 s assumed to occur.

The water pressure dtstrlbution assumed for this analysis Is based upon the hypothesls that the weoge itsel f is impermeable and that water enters the top of the wedge along IInes of intersection 3 and 4 and leaks from the slope face along lines of
8.6

Figure 8.4 : Wedge factor K as a function of wedge geometry.

a) Pictorial view of wedge showing the numbering of intersection lines and planes.

b) View normal to the line of intersection 5 showing the total wedge height and the water pressure distribution.
figure 8.5: Geometry of wedge used for stability analysis including the influence of cohesion and of water pressure on the failure surfaces.

Intersection 1 and 2. The resulting pressure distrlbution Is shown in Flgure 8.5b - the maximum pressure occurring along the I Ine of intersection 5 and the pressure being zero along I Ines $1,2,3$ and 4 . Thls water pressure distrlbutlon is belleved to be representative of the extreme conditions which could occur durlng very heavy rain.

The numberlng of the lines of Intersectlon of the various planes Involved in this problem is of extreme importance since total confusion can arlse in the analysls If these numbers are mlxed-up. The numberlng used throughout th I s book is as follows:

> 1 - Intersection of plane A with the slope face 2 - Intersection of plane B with the slope face 3 - Intersectlon of plane A with upper slope surface 4 - Intersectlon of plane B with upper slope surface
> 5 - Intersectlon of planes A and B

It is assumed that silding of the wedge always takes place along the IIne of Intersection numbered 5 .

The factor of safety of this slope is derlved from the detalled analysls of thls problem publ Ished by Hoek, Bray and Boyd(201).
$F=\frac{3}{\gamma^{H}}\left(c_{A} \cdot X+c_{B} \cdot Y\right)+\left(A-\frac{\gamma_{w}}{2 \gamma} \cdot X\right) \operatorname{Tan} \phi A+\left(B-\frac{\gamma_{w}}{2 \gamma} \cdot y\right) \operatorname{Tan} \phi_{B}$
(91)
where
C_{A} and C_{B} are the cohesive strengths of planes A and B
\varnothing_{A} and A_{B} are the angles of friction on planes A and B
$\boldsymbol{\gamma}$ is the unlt weight of the rock
Yw 1 s the unl t wel ght of water
H is the total helght of the wedge (see Flgure 8.5)
X, Y, A, and B are dimenslonless factors which depend upon the geometry of the wedge.

$$
\begin{align*}
& x=\frac{\sin \theta_{24}}{\sin \theta_{45} \cdot \cos \theta_{2 n a}} \tag{92}\\
& Y=\frac{\sin \theta_{13}}{\sin \theta_{35} \cdot \cos \theta_{1 n b}} \tag{93}\\
& A=\frac{\cos \#_{a}-\cos \pi_{b} \cdot \cos \theta_{n a} \cdot n b}{\sin \pi_{5} \cdot \sin ^{2} \theta_{n a} n b} \\
& B=\frac{\cos \pi_{b}-\cos _{2} \pi_{a} \cdot \cos \theta_{n a} \cdot n b}{\sin \pi_{5} \cdot \sin ^{2} \theta_{n a} \cdot n b}
\end{align*}
$$

where \mathbb{W}_{a} and \mathbb{W}_{b} are the dlps of planes A and B respect1 vely and \mathbb{W}_{5} Is the dlp of the Ilne of intersection 5 .

The angles required for the solution of these equations can most convenientiy be measured on a stereoplot of the data which deflnes the geometry of the wedge and the slope.

Consider the following example:

Plane	dip ${ }^{\circ}$	dip direction ${ }^{\circ}$	Propertles
A	45	105	$\phi_{A}=20^{\circ}, c_{A}=500 \mathrm{l} \mathrm{D} / \mathrm{ft} .^{2}$
B	70	235	$\mathscr{D}_{B}=30^{\circ}, C_{B}=1000 \mathrm{lb} / \mathrm{ft} .^{2}$
Slope face	65	185	$\gamma=160 \mathrm{lb} / \mathrm{ft} .3$
Upper surface	12	195	$\gamma_{w}=62.5 \mathrm{lb} / \mathrm{ft}$ \%

The total height of the wedge $H=130 \mathrm{ft}$.
The stereoplot of the great clrcles representing the four planes Involved In thls problem is presented In Figure 8.6 and all the angles required for the solution of equations (92) to (95) are marked In thls flgure.

Flgure 8.6: Stereoplot of data required for wedge stabll Ity analysis.

WEDGE STABILITY CALCULATION SHEET		
InPUT DATA	FUNCTION VALUE	CALCULATED ANSWER
$\begin{aligned} & \psi_{\mathrm{a}}=45^{\circ} \\ & \psi_{\mathrm{b}}=70^{\circ} \\ & \psi_{5}=31.20 \\ & \theta_{\text {na.nb }}=101^{0} \end{aligned}$	$\begin{aligned} & \cos \psi_{\mathrm{a}}=0.7071 \\ & \cos \psi_{\mathrm{b}}=0.342 \theta \\ & \sin \psi_{5}=0.5180 \\ & \cos \theta_{\text {na.nb }}=-0.191 \\ & \sin \theta_{\text {na.nb }}=0.982 \end{aligned}$	$\begin{aligned} & A-\frac{\cos \psi_{\mathbf{a}}-\cos \psi_{\mathbf{b}} \cdot \cos \theta_{\mathbf{n a} \cdot \mathbf{n b}}}{\sin \psi_{\mathbf{5}} \cdot \sin ^{2} \theta_{\mathbf{n a} \cdot \mathbf{n b}}} * \frac{0.7071+0.342 \times 0.191}{0.5180 \times 0.9636}=1.5475 \\ & B-\frac{\cos \psi_{\mathbf{b}}-\cos \psi_{\mathbf{a}} \cdot \cos \theta_{\mathbf{n a} \cdot \mathbf{n b}}}{\sin \psi_{\mathbf{5}} \cdot \sin ^{2} \theta_{\mathbf{n a} \cdot \mathbf{n b}}} * \frac{0.3420+0.7071 \times 0.191}{0.5180 \times 0.9636}=0.9557 \end{aligned}$
$\begin{aligned} & \theta_{24}=65^{\circ} \\ & \theta_{45}=25^{\prime \prime} \\ & \theta_{2 . n a}=500 \end{aligned}$	$\begin{aligned} & \sin \theta_{24}=0.9063 \\ & \sin \theta_{45}=0.4226 \\ & \cos \theta_{2 . n a}=0.6428 \end{aligned}$	$x-\frac{\sin \theta_{24}}{\sin \theta_{45} \cdot \operatorname{Cos} \theta_{2 . n a}} \cdot \frac{0.9063}{0.4226 \times 0.6428}=3.3363$
$\begin{aligned} & \theta_{13}=620 \\ & \theta_{35}=310 \\ & \theta_{1 . n b}=600 \end{aligned}$	$\begin{aligned} & \sin \theta_{13}=0.8829 \\ & \sin \theta_{35}=0.5150 \\ & \cos \theta_{1 . n b}=0.5000 \end{aligned}$	$Y-\frac{\sin \theta_{13}}{\sin \theta_{35} \cdot \cos \theta_{1 . n b}} * \frac{0.8829}{0.5150 \times 0.500}=3.4287$
$\begin{aligned} & \phi_{A}=30^{\circ} \\ & \phi_{B}=200 \\ & \gamma=160 \mathrm{lb} / \mathrm{ft}^{3} \\ & \gamma_{W}=62.5 \mathrm{lb} / \mathrm{ft}^{3} \\ & \mathrm{c}_{A}=500 \mathrm{ib} / \mathrm{ft}^{2} \\ & \mathrm{c}_{\mathrm{B}}=1000 \mathrm{lb} / \mathrm{ft}^{2} \\ & \mathbf{H}=130 \mathrm{ft} \end{aligned}$	$\begin{aligned} & \operatorname{Tan} \phi A=0.5773 \\ & \operatorname{Tan} \phi B=0.3640 \\ & \gamma_{W} / 2 \gamma=0.1953 \\ & 3 c_{A} / \gamma H=0.0721 \\ & 3 c_{B} / \gamma H=0.1442 \end{aligned}$	$\begin{aligned} & F=\frac{3 C_{A}}{\gamma_{H}} X_{+} \frac{3 C_{B} \cdot Y}{\gamma H}+\left(A-\frac{\gamma_{W}}{2 Y} \cdot X\right) \tan \phi_{A}+\left(B-\frac{\gamma_{W}}{2 Y} \cdot Y\right) \tan \phi_{B} \\ & F=0.2405+0.4944+0.6934-0.3762+0.3476-0.2437=1.3562 \end{aligned}$

Determination of the factor of safety is most convenlently carrled out on a calculation sheet such as that presented on page 8.10. Setting the calculations out In this manner not only enables the user to check al I the data but It also shows how each varlable contrlbutes to the overall factor of safety. Hence, If It Is required to check the Influence of the cohesion on both planes fal lling to zero, thls can be done by setting the two groups containing the coheston values C_{A} and C_{B} to zero, giving a factor of safety of 0.62. Alternatively, the effect of drainage can be checked by puttlng the two water pressure terms (1.0. those containing $/_{W}$) to zero, giving $F=1.98$.

As has been emphasized In previous chapters, this ablity to check the sensitivity of the factor of safety to changes in materlal propertles or In slope loading is probably as Important as the abllity to calculate the factor of safety Itself.

Wedge stabllity charts for frlction only

If the cohesive strength of the planes A and B Is zero and the slope is fully dralned, equation (77) reduces to

$$
F=A \cdot \tan \phi_{A}+B \cdot \tan \phi_{B}
$$

The dimenslonless factors A and B are found to depend upon the dips and dip directions of the two planes and values of these two factors have been computed for a range of wedge geometr les and the results are presented as a series of charts on the following pages.

In order to illustrate the use of these charts, consider the following example:

	dip	dip direction	friction angle
Plane A	40	165	35
Plane B	$\underline{00}$	$\underline{285}$	20
Differences	30	120	

Hence, turning to the charts headed "Dip difference $30^{\circ} "$ and readlng off the values of A and B for a difference in dip direction of 120°, one finds that

$$
A=1.5 \text { and } B=0.7
$$

Substltution In equation (96) gives the factor of safety as $F=$ 1.30. The values of A and B give a direct indication of the contrlbution which each of the planes makes to the total factor of safety.

Note that the factor of safety calculated from equation 96 Is independent of the slope height, the angle of the slope face and the Inclination of the upper slope surface. This rather surprising result orlses because the weight of the wedge occurs in both the numerator and denominator of the factor of safety quatlon and, for the friction only case, this term cancels out, leaving a dimensionless ratio which defines the factor of safety (see ${ }^{(1)}$ quatlon(89)on page 8.4). This simplif ication Is very useful in that it enables the user of these charts to carry out a very quick check on the stability of a slope on the
basis of the dlps and dip directions of the discontinuities in the rock mass into which the slope has been cut. An example of such an analysis is presented later in this chapter.

Many trial calculations have shown that a wedge having a factor of safety In excess of 2.0 , as obtained from the friction only stabl lity charts, is unlikely to fail under even the most severe comblnation of conditions to which the slope is likely to be subjected. Conslder the example discussed on pages 8.9 to 8.11 in which the factor of safety for the worst conditions (zero cohesion and maximum water pressure) is 0.62 . This is 50% of the factor of safety of 1.24 for the friction only case. Hence, had the factor of safety for the friction only case been 2.0, the factor of safety for the worst conditions would have been 1.0, assuming that the ratio of the factors of safety for the two cases remains constant.

On the basis of such trial calculations. the authors suggest that the friction only stability charts can be used to define those slopes which are adequately stable and which can be ignored in subsequent analyses. Such slopes, having a factor of safety in excess of 2.0, pass Into the stable category in the chart presented in Figure 1.5 (page 1.8). Slopes with a factor of safety, based upon friction only, of less than 2.0 must be regarded as in the potentially unstable category of Figure 1.5, 1 .e. these slopes require further detailed examination.

In many practical problems involving the design of the cut slopes for a highway, it will be found that these frlction only stability charts provide all the information which Is required. It is frequently possible, having identified a potentially dangerous slope, to eliminate the problem by a slight re-alignment of the benches or of the road al ignment. Such a solution is clearly only feasible if the potential danger is recognized before excavation of the slope is started and the main use of the charts is during the site investigation and preliminary plannling stage of a slope project.

Once a slope has been excavated, these charts will be of Ilmited use since it will be fairly obvious if the slope is unstable. Under these conditions, a more detailed study of the slope wlI be required and use would then have to be made of the method described on pages 8.5 to 8.10 or of the analytical solutlon presented in Appendix 2. In the authors' experience relatively few slopes require this detailed analysis and the reader should beware of wasting time on such an analysis when the simpler methods presented in this chapter would be adequate. A full stabllity analysis may look very impressive in a report but, unless it has enabled the slope engineer to take positlve remedial measures, it may have served no useful purpose.

Practical example of wedge analysis
During the route location study for a proposed highway, the engineer responsible for the highway layout has requested guidance on the maximum safe angles which may be used for the deslgn of the slopes. Extensive geological mapping of outcrops on the slte together with a certain amount of core logging has established that there are five sets of geological discontinuities In the rock mass through wh ich the road will pass. The dips and dlp directions of these discontinuities are as follows:

WEDGE STABILITY CHARTS FOR FRICTION ONLY

8.14

Discontinulty set	dip"	dip direction"
1	66 ± 2	298 ± 2
2	68 ± 6	320 ± 15
3	60516	360 ± 10
4	58 ± 6	76 ± 6
5	54 ± 4	118 ± 2

Note that, because this mapping covers the entire site which extends over several acres, the scatter in the dip and dip direction measurements is consi derable and must be taken into account In the analysis. This scatter can be reduced by more detailed mapping in specific locations, for example, Figure 3.10 on page 3.25 , but this may not be possible because of shortage of time or because sultab 1 e outcrops are not avai lable.

Figure 8.7 shows the pole locations for these five sets of discontinuities. Al so shown on this figure are the extent of the scatter In the pole measurements and the great circles corresponding to the most probable pole positions. The dashed figure surrounding the great circle Intersections is obtained by rotating the stereoplot to find the extent to which the intersection point is influenced by the scatter around the pole points. The technique descrlbed on page 3.11 is used to define this dashed figure. The intersection of great circles 2 and 5 has been excluded from the dashed figure because it def i nas a line of intersection dipping at less than 20° and thls is considered to be less than the angle of friction.

The factors of safety for each of the discontinuity intersections is determined from the wedge charts (some interpolation Is necessary) and the values are given in the circles over the intersection points. Because al I of the planes are re lat i vel y steep, some of the factors of safety are dangerously low (assuming a friction angle of 30°). Since it is unlikely that slopes with a factor of safety of less than 0.5 could be economically stabilized, the only practical solution is to cut the slopes in these regions to a flat enough overall angle to eliminate the problem.

The construction given in Figure 8.8 is that which is used to find the maximum safe slope angle for the slopes on either side of the highway. This construction involves positioning the great clrcle representing the slope face for a particular dip direction in such a way that the unstable region (shaded) is avolded. The maximum safe slope angles are marked around the perimeter of this figure and their positions correspond to the orientation of the slope.

Figure 8.9 shows the suggested slope angles as presented to the highway engineer by the rock slope engineer. The slopes on the east side can be cut at 72° but on the west side, it is necessary to cut them back to 30°. Note that as the highway continues to curve In the direction shown in the diagram, it will be necessary to flatten the east slope because more unstable wedges will become adversely oriented on the slope as shown In Figure 8.8.

Notes:

a. Black trlangles mark most likely position of poles of five sets of discontinuities present in rock mass.
b. Shaded area surrounding pole position defines extent of scatter in measurements.
c. Factors of safety for each combination of discontinulties given In itallcs In circle over corresponding intersection.
d. Dashed line surrounds area of potential instability.

Figure 8.7: Stereoplot of geological data for the preliminary design of the highway slopes.

Mote: Figures around the perlmeter are the recommended stable slope angles for the corresponding position on the slope.

Figure 8.8: Stereoplot of great circles representing stable slopes above the highway in a rock mass containing the five sets of discontinuities defined in Figure 8.7.
8.24

Figure 8.9: $\quad \begin{aligned} & \text { Design of highway slopes according to safe } \\ & \text { angles defined in Figure 8.8. }\end{aligned}$

Chapter 8 references

190. LONDE. P. Une méthode d'analyse à trois dimtnsions de la stabllité d'une rive rocheuse. Annales des Ponts et Chouseáes. Paris. 1965, pages 37-60.
191. LONDE, P., VIGIER,G. and VORHERINGER. R. The stability of rock slopes, a three-dimensional study. J. Soil Nech. and Foundation Div. ASCE. Vol.95, No. SM 1, 1969, ptgts 235-262.
192. LDNDE, P., VIGIER,G. and VORHERINGER, R. Stability of slopes-graphical methods. J. Soil Mech. and Poundation Div. ASCE. vol. 96, No. SM 4, 1970, ptgts 1411-1434.
193. JOHN, K.W. Engineering analysis of three-dimensional stability probitms utilising the reference hemisphere. Proc. 2nd Congress. Intn2. Soc. Rock Mech. Belgrade. 1970, Vol. 2, ptgts 314-321.
194. WITTKE, W.W. Hethod to analyse the sttbiiity of rock slopes with and without additional loading. (in German) Felsmechanik und Ingenieurgeologie. Supp. II, Vol. 30. 1965, pages 52-79.
English translation in Imperial College Rock Htchanics Research Report No. 6, July 1971.
195. GOODMAN, R.E. The resolution of stresses in rock using stereographic projection. Intnl. J. Rock Mech. Mining Sci. vol. 1, 1964, pages 93-103.
196. GOODMAN, R.E. and TAYLOR, R.L. Htthods of analysis of rock slopes and - butmtnts : a review of recent devtiopmtnts. in Failure and Breakage of Rocke. Edited by C.Fairhurst. AIME, 1967, pages 303-320.
197. HEUZE, F.E. and GOODMAN, R.E. Three-dimensional approach for the design of cuts in Jointed rock. Proc. 23th Sympos. Rock Mech. Urbana, liiinois. 1971.
198. HENDRON, A.J., CORDING. E.J. 8nd AIYER, A.K.

Anslytical and graphic81 methods for the analysis of slopes in rock masses. U.S. Army Engineering Huclear Cratering croup. Tech. Rep. Mo.36, 1971. 168 pages.
199. SRIVASTAVA, L.S. Stability of rock slopes thd excavations. J. Eng. Geology. Indian Soc.Engineering Geology. Vol.1/1, 1966. ptgts 57-72.
200. SAVKOV, L.V. Considerations of fracture in the calculation of rock slope sttbilitits. Soviet Mining Science 1967. ptgts r-6.
201. HOEK, E., BRAY, J.W. and BOYD, J.H. The stability of 8 rock slope containing a wedge resting on two intersecting discontinuities. Quarterly J. Engineering Geology. Vol.6. Mo.1, 1973.
202. HOEK, E. Methods for the rapid assessment of the stability of three-dimensional rock slopes. Quarterly J. Engineering Geology. Vol.6, No.3, 1973.
203. TAYLOR, C.L. Geometric analysis of geological separation for slope stability Investigations. Butt. Ass. Engineering Geologists. Vol. VI I, Nos. 1 b 2, 1970, pages 76-85.
204. TAYLOR, C.E. Geometric analysis of rock slopes. Proc. 21st Annual Highusy Geology Symposizm. University Kansas, April, 1970.
205. WILSON, S.D. The application of soil mechanics to the stabllity of open pit mines. Colorado School of Mines Quarterly. Vol. 54, No.3, 1959, pages 95-113.
206. HULLER, L. The European approach to slope stability problems in open-pit mines. Colorado School of Mines Quarterly. Vol.54, No.3, 1999. pages 117-133.
207. HULLER, L. and JOHN, K.W. Recent developments of stability studies of steep rock slopes In Europe. Trans. Soc. Min. Engineers, AME. Vol.226. No. 3. 1963, pages 326-332.
208. HULLER, L. Application of rock mechanics in the design of rock slopes. Intnl. Conf. State of Stress in the Earth's Crust. Santa Monica. 1963. Elsevier, New York. 1964.
209. PETZNY, H. On the stability of rock slopes (in German) Felomechanik und Ingenieurgeoligie. Suppl.111, 1967.

Chapter 9 Circular failure.

Introduction

Although this book is concerned primarily with the stability of rock slopes, the reader will occasionally be faced with a slope problem involving soft materials such as highly weathered rock or rock fills. In such materials, failure occurs along a surface which approaches a circular shape and this chapter is devoted to a brief discussion on how stability problems involvIng these materials are dealt with.

In a reviow on the historlcal development of slope stability theorles, Golder(210) has traced the subject back almost 3 hundred years. During the past half century, a vast body of I iterature on this subject has accumulated and no attempt will be made to summarize this material in this chapter. Standard soil mechanics text books such as those by Taylor(174), Terzaghi(211) and Lambe and Whitman(212) all contain excel lent chapters on the stabillty of sol I s lopes and it i s suggested that at least one of these books should occupy a prominent place on the bookshelf of anyone who is concerned with slope stability. In addition to these books a number of important papers dealing with specific aspects of soil slope stability have been published and a selected list of these is given under references 213 to 233 at the end of this chapter.

The approach adopted in this chapter is to present a ser les of the slope stabllity charts for circular failure. These charts enable the user to carry out a very rapid check on the factor of safety of a slope or upon the sensitivity of the factor of safety to changes In groundwater conditions or slope prof i le. These charts should only be used for the analysis of circular failure In materials where the properties do not vary through the soll or waste rock mass and where the conditions assumed in deriving the charts, discussed in the next section, apply. A more elaborate form of analysls is presented at the end of this chapter for use in cases where the mater lal properties vary within the slope or where part of the slide surface is at a soil/rock interface and the shape of the fai lure surface differs significantly from a simple circular arc.

Conditions for circular failure

In the previous chapters it has been assumed that the fai I ure of rock slopes is controlled by geological features such as bedding planes and joints which divide the rock body up into a discontinuous mass. Under these conditions, the fallure path is normally defined by one or more of the discontinulties. In the case of a sol 1 , a strongly defined structural pattern no longer exists and the failure surface is free to flnd the line of least resistance through the slope. Observations of slope failures in soils suggests that this failure surface generally takes the form of a circle and most stability theorles are based upon this observation.

The conditions under which circular fai lure will occur arise when the individual particles in a roll or rock mass are very small as compared with the size of the slope and when these particles are not interlocked as result of their shape. Hence, broken rock in a large fill will tend to behave as a "soll" and large failures will occur in a circular mode. Al ternatlvely, soil consisting of sand, silt and smaller particle sizes will exhibit circular fallure surfaces, even in slopes of only a few

Figure 9.1 : Shallow surface failure in large waste dumps are generally of a circular type.

Figure 9.2 : Circular failure in the highly altered and weathered rock forming the upper benches of an open pit mine.

NOTE :

Circular failure charts are optimized for density of 120 pcf. Densitios hlgher than this give high factors of safety, densities lower than this givolow factors of safety. Detailed circular analysis may be required for slopes in which the material density ls significantly different from 120 pcf.
feet in helght. Highly altered and weathered rocks will also tend to fall In thls manner and It Is approprlate to design the sol I slopes on the crest of rock cuts on the assumpt Ion that fallure would be by a clrcular failure process.

Derivation of circular failure chart
The following assumptlons are made In derlving the stabll Ity charts presented In thls chapter:
a) The materlal forming the slope is assumed to be homogeneous, l.e. Its mechanlcal properties do not vary with direction of loading.
b) The shear strength of the mater I al Is character Ized by a cohesion c and a friction angle@ which are related by the equation $\tau=c+\sigma$. Tan \varnothing.
c) Fallure Is assumed to occur on a clrcular fallure surface whlch passes through the toe of the slope*.
d) A vertical tension crack Is assumed to occur In the upper surface a In the face of the slope.
e) The locatlons of the tenslon crack and of the fal lure surface are such that the factor of safety of the slope Is a minlmum for the slope geometry and groundwater conditions considered.
f) A range of groundwater condltions, varying from a dry slope to a fully saturated slope under heavy recharge, are considered In the analysis. These cond It lons are deflned later In thls chapter.

Defining the factor of safety of the slope as

$$
F=\frac{\text { shear strength avallable to reslst sliding }}{\text { shear stress mobllized along fallure surface }}
$$

and rearranging this equation, we obtain

$$
\begin{equation*}
\tau_{m b}=\frac{c}{F}+\frac{\sigma \cdot \tan \phi}{F} \tag{97}
\end{equation*}
$$

where $\tau_{m b}$ is the shear stress mobl I lied along the fal lure surface.

Since the shear strength avallable to resist sllding Is dependent upon the distrlbution of the normal stress σ along thls surface and, since this normal stress distribution is unknown, the problem Is statically IndetermInate. In order to obtaln a solution It is necessary to assume a speclf Ic normal stress distrlbutlon and then to check whether thls distrlbutlon gives meaningful practlcal results.

- Terzaghl(2111, page 170, shows that the toe fal lure assumed for this analysls glves the lowest factor of safety provided that $\phi>5^{\circ}$. The $\varnothing=0$ analvsis. Involving fallure below the toe of the slope through the base materlal has been discussed by Skempton(234) and by Bishop and Bjerrum(235) and Is applicable to fallures which occur durlng or after the rapld construction of a slope.

The Influence of varlous normal stress distributlons upon the factor of safety of sol I slopes has been examined by FrohI lch(216) who found that a lower bound for al I factors of safety which satisfy statics is glven by the assumption that the normal stress is concentrated at a single polnt on the fal lure surface. Siml larly, the upper bound Is obtal ned by assuming that the normal load Is concentrated at the two end points of the fallure arc.

The unreal nature of these stress distrlbutions is of no consequence since the object of the exerclse, up to this point, Is simply to determine the extremes between which the actual factor of safety of the slope must I le. In an example consldered by Lambe and Whltman(212), the upper ad lower bounds for the factor of safety of a particular slope corresponded to 1.62 and 1.27 respectively. Analysls of the same problem by Blshop's simplifled method of sllces glves a factor of safety of 1 . 30 which suggests that the actual factor of safety may lie reasonably close to the lower bound solutlon.

Further evidence that the lower bound solution Is also a meanIngful practical solution Is provided by an examination of the analysis which assumed that the fal lure surface has the form of a logarlthmic splral(227). In thls case, the factor of safety Is Independent of the normal stress distribution and the upper and lower bounds colnclde. Taylor(174) compared the results from a number of logarithmic spiral analyses with results of lower bound solutlons* and found that the difference Is negl lglble. On the basis of this comparison, Taylor concluded that the lower bound solution provides a value of the factor of safety whlch is sufflciently accurate for most practical problems Involving simple circular fal lure of homogeneous slopes.

The authors have carrled out similar checks to those carried out by Taylor and have reached the same conc 1 us lons. Hence, the charts presented In thls chapter correspond to the lower bound solution for the factor of safety, obtalned by assuming that the normal load is concentrated a a single point on the fal lure surface. These charts differ from those publlshed by Taylor In 1948 In that they Include the Influence of a critical tenslon crack and of groundwater In the slope.

Groundwater flow assumpt Ions
In order to calculate the upllft force due to water pressure acting on the fallure surface and the force due to water In the tension crack, It Is necessary to assume a set of groundwater flow patterns which colnclde as closely as possible with those conditions which are belleved to exlst In the field.

In the analysis of rock slope fallures, dlscussed In Chapters 7 and 8, It was assumed that most of the water flow took place In discontinultles In the rock and that the rock Itself was prac+icaliy Impermeable. In the case of slopes In sol I or waste rock, the permeablilty of the mass of mater la I Is genera IIy

The lower bound solution discussed In this chapter is usually known as the Friction CIrcle Method and was used by Taylor(174) for the derlvation of hls stablilty charts.
several orders of magnitude hlgher than that of Intact rock and, hence, a general flow pattern wll develop In the materlal behind the slope.

Figure 6.9s on page 6.11 shows that, within the soil mass, the equipotentlals are approximately perpendicular to the phreatic surface. Consequently, the flow I Ines willbe approximately parallel to the phreatlc surface for the condltion of steady state drawdown. Flgure 9.3 s shows that thls approximation has been used for the analysls of the water pressure distribution In a slope under conditlons of normal drawdown. Note that the phreatlc surface is assumed to coincide with ground surface at a distance X, measured In multiples of the slope helght, behind the toe of the slope. This may correspond to the position of a surface water source such as a river of dam or it may simply be the point where the phreatic surface Is judged to Intersect the ground surface.

The phreatic surface Itself has been obtalned, for the range of slope angles and values of x considered, by a computer solution of the equatlons proposed by L. Casagrande(236), discussed In the text book by Taylor(174).

For the case of a saturated slope subjected to heavy surf ace recharge, the equipotentlals and the assoclated flow llnes used In the stablilty analysls are based upon the work of $\operatorname{Han}(237)$ who used an electrical resistance malogue method for the study of groundwater flow patterns in Isotropic slopes.

Production of clrcular fallure charts
The clrcular fal lure charts presented In thls chapter were produced by means of a Hewlett-Packard 9100 B calculator with graph plotting facillties. Thls machine was progranmed to seek out the most critical combination of fallure surface and tenslon crack for each of a range of slope geometrles and groundwater conditlons. Provislon was made for the tension crack to be located In elther the upper surface of the slope or In the face of the slope. Detalled checks were carrled out In the region surrounding the toe of the slope where the curvature of the equlpotentlals results In local flow which differs from that Illustrated In Figure 9.3a.

The charts are numbered 1 to 5 to correspond with the groundwater condltlons deflned In the table presented on page 9.6.

Use of the clrcular fallure charts

In order to use the charts to determine the factor of safety of a partlcular slope, the steps outllned below and shown In Flgure 9.4 should be followed.

Step 1: Declde upon the groundwater conditions rhlch are beI leved to exist In the slope and choose the chart which Is closest to these condltions, uslng the table presented on page 9.6.

Step 2: Calculate the value of the dimensionless ratlo

$$
\frac{c}{\gamma H \cdot \operatorname{Tan} \varnothing}
$$

a) Groundwater flow pattern under steady state drawdown conditions where the phreatic surface coincides with the ground surface at a distance \boldsymbol{x} behind the toe of the slope. The distance \boldsymbol{x} is measured in multiples of the slope height \boldsymbol{H}.

Figure 9.3 : Definition of groundwater flow patterns used in circular failure analysis of soil and waste rock slopes.

Figure 9.4 : Sequence of steps involved in using circular failure charts to find the factor of safety of a slope.

Find thls value on the outer clrcular scale of the chart.
step 3: Follow the radialline from the value found In step 2 to Its intersection with the curve which corresponds to the slope angle under consldwation.

Step 4: FInd the corresponding value of Tand/F or c/rHF, depending upon which is more convenlent, and calculate the factor of safety.

Consider the following example:
A 50 ft . high slope with a face angle of 40° Is to be excavated In overburden sol I with a density $\gamma=100 \mathrm{lb/ft} 3$, a cohesive strangth of $800 \mathrm{lb} / 4+\boldsymbol{2}$ and a triction angle of 30°. Find the factor of safety of the slope, assuming that there is a surface water source 200 ft . behind the toe of the slope.

The groundwater conditions Indlcate the use of chart No. 3. The value of $c / \gamma H$. Tan $\varnothing=0.28$ and the correspond 1 ng value of Tanф/ F, for a 40° slope, is 0.32 . Hence, the factor of safety of the slope Is 1.80.

Because of the speed and simplicity of using these charts, they are Ideal for chacklng the sensitivity of the factor of safety of a slope to a wide range of conditions and the authors suggest that thls should be their main use.

CIRCULAR FAILURE CHART NUMBER 1

CIRCULAR FAILURE CHART NUMBER 2

CIRCULAR FAILURE CHART NUMBER 3

CIRCULAR FAILURE CHART NUMBER 4

CIRCULAR FAILURE CHART NUMBER 5

Location of crltical fallure circle and tension crack
During the production of the clrcular failure charts, presented on the previous pages, the locatlons of both the critical fallure clrcle and the crltical tension crack for limiting equillbrlum ($F=1$) were determined for each slope analyzed. These locatlons are presented, In the form of charts, In Figures 9.5a and 9.5b.

It was found that, once groundwater Is present In the slope, the locations of the critical clrcle and the tension crack are not particularly sensitive to the position of the phreatic surface and hence only one case, that for chart No. 3, has been plotted. It wlll be noted that the location of the critlcal cIrcle centre given In Figure 9.5b differs signif Icantly from that for the drained slope plotted in Figure 9.5 s .

These charts are useful for the construction of drawlngs of potentlal slldes and also for estlmating the friction angle when back-analyzing existing clrcular slides. They al so provide a start for a more sophistlcated circular fallure analysis In which the location of the circular fallure surface having the lowest factor of safety Is found by iterative methods.

As an example of the appllcation of these charts, conslder the case of a slope having a face angle of 30° In a drained sol I with a friction angle of 20'. Flgure 9.5 a shows that the critical fal lure clrcle centre is located at $X=0.2 \mathrm{H}$ and $Y=1.85 \mathrm{H}$ and that the crltical tension crack ls at a distance $b=0.1 \mathrm{H}$ behind the crest of the slope. These dimensions are shown In Figure 9.6 below.

Figure 5.6 : Location of critical failure surface and critical tension crack for a 30° slope in drained soil with a friction angle of 20°.

Figure 9.5a : Location of critical failure surface and critical tension crack for drained slopes.

Figure 9.5b: Location of critical failure surface and critical tension crack for slopes with groundwater present.

Practical example number 1

ChIna clay pit slope
Ley(153) has Investlgated the stabllity of a ChIna clay plt slope which was consldered to be potentlally unstable. The slope proflle ls Illustrated In FIgure 9.7 below and the Input data used for the analysis ls Included In thls flgure. The materlal, a heavily kaollnized granite, was carefully tested by Ley and the friction angle and cohesive strength are consldered reliable for this perticular slope.

Two plezometers In the slope and a known water source some distance behind the slope enabled Ley to postulate the phreatlc surface shown In Flgure 9.7. The chart which corresponds most closely to these groundwater condltions ls consldered to be chart number 2.

From the informatlon given In Figure 9.7, the value of the rat $10 \mathrm{c} / \mathrm{ZH}$. Tan $\varnothing=0.0056$ and the corresponding value of Tanp/F, from chart number 2, Is 0.76. Hence, the factor of safety of the slope is 1.01.

Ley also carried out a number of trlal calculations using Janbu's mothod(238) and, for the criticalsilp clrcle shorn In Flgure 9.7, found a factor of safety of 1.03.

These factors of safety Indicated that the stabll Ity of the slope was Inadequate under the assumed condltons and steps were taken to dea I wlth the problem.

Figure 9.7 : Slope profile of China clay pit slope considered in example number 1.

Practical example number 2

Projected hlghway slope

A highway plan calls for a slope on one slde of the highway to have an angle of 42°. The total helght of the slope wlll be 200 ft . when completed and $1+$ Is required to check whether the slope will be stable. A slte visit enables the slope engineer to assess that the slope is in weathered and altered material and that fal lure, If It occurs, wll be of a circular type. Insufficlent tlme is aval lable for groundwater levels to be accuratel y estab I Ished or for shear tests to be carr led out. The stablility analysis is carrled out as fol lows:

For the condition of $\mid 1 \mathrm{ml}+\mathrm{Ing}$ equl $\mathrm{I} \mid \mathrm{lbrlum}, F=1$ and $\operatorname{Tan} \phi / F$ $=$ Tan \propto For a range of friction angles, the values of Tan \varnothing are used to find the values of $\mathrm{c} / \mathcal{T H}$. Tan \varnothing, for 42°, by reversing the procedure outlined In Flgure 9.4. The value of the cohestion c which Is mobllized at fal lure, for a glven frlction angle, can then be calculated. Thls analysis is carrled out for dry slopes, using chart number 1, and for saturated slopes, using chart number 5. The resulting range of friction angles and conesive strengths which would be mobllized at fallure are plotted in Flgure 9.6.

The shaded clrcle Included In Flgure 9.8 indlcates the range of shear strengths which are considered probable for the mater lal under consideration, based upon the data presented In Flgure 5.17 on page 5.32. It Is clear from this figure that the avallable shear strength may not be adequate to malntaln stablllty In thls slope, particularly when the slope Is saturated. Consequently, the slope englneer would have to recommend that, elther the slope should be flattened or, that Investlgations Into the groundwater conditions and materlal propertles should be undertaken In order to establ Ish whether the anal ysls presented In Figure 9.8 Is too pessimistic.

The effect of flattenIng the slope can be checked very quickly by finding the value of $\mathrm{c} / \mathrm{\gamma H}$. Ton \varnothing for a flatter slope, say 30°, In the same way as It was found for the 42° slope. The dashed IIne In Flgure 9.8 Indicates the shear strength which would be mobllized in a dry slope with a face angle of 30°.

FIgure 9.8: Comparison between shear strength mobllized and shear strength avallable for slope consldered in example number 2.

A = saturated 42° slope.
$B=\operatorname{dry} 42^{\circ}$ slope.
C - dry 30° slope.
D - probab Is shear strength range for materlal n which slope Is cut.

Practical example number 3
Stability of waste dumps
As a result of the catastrophic slide in coll iery waste material at Aberfan in Wales on October 22nd 1966, attention was focused on the potential danger associated with large dumps of waste material from mining operations(239). Since 1966, a number of excel lent papers and handbooks deal ing w f th waste dump stability and with the disposal of finely ground waste have become avallable(241-243) and the authors do not feel that a detailed discussion on this subject would be justified in this book. The purpose of this example is to illustrate the application of the design charts for circular failure, presented earlier in this chapter, to waste dump stability problems.

McKechnie Thanpson and Rodin(240) have shown that the relationship between shear strength and normal stress for colliery waste material is usually non-linear as shown in Figure 9.9. In view of the discussion on shear strength presented in chapter 5, this finding is not particularly surprising and the authors suspect that most waste materials exhibit this non-linearity to a greater or lesser degree. Consequently, the methods used in this example, although applied specifically to colliery waste, are believed to be equally applicable to most rock waste dumps.

In order to apply the circular failure charts presented earlier in this chapter to the failure of a material which exhibits non-linear failure characteristics, it is necessary to determine a number of instantaneous friction angles and cohesive strengths for different effective normal stress levels. This is done by drawing a series of tangents to the Hohr envelope, each tangent touching the envelope at the normal stress level at which c_{i} and ϕ_{i} are to be found.

In the case of the failure curve for coll iery waste, shown in Figure 9.9, the instantaneous cohesion and the friction angles given by the three tangents are as follows:

Tangent nunber	Cohesion kN / m	Friction angle degrees
1	0	38
2	20	26
3	40	22

The relationship between slope height and slope angle for the condition of limiting equilibrium, $F=1$, will be investigated for a dry dunp (using chart No. 1) and for a dump with some groundwater flow (using chart No. 3).

Tangent number 1
Since the cohesion intercept is zero for this tangent, the value of the dimensionless ratio $c / z H$. Tan $\phi=0$ and hence, the slope angle at which the face would repose is given by the slope angle corresponding to the value of $\operatorname{Tan~} 38^{\circ}=0.78$ on the TandF axis (noting that $F=1$). Fran chart No. 1, this intercept is 38 ' and for chart No. 3 it is approximately 25 '.

Figure 9.9: Shear strength of typical colliery waste material.

Figure 9.10 : Relationship between slope height and slope angle for a typical colliery waste dump with different water conditions.

Note that, for zero cohesion, the dump face angle would be Independent of the slope helght. It Is normal I y assumed that the ang la of repose of a waste dump is Independent of the helght of the dump and Is equal to the angle of frlction of the materlal. Figure 9.10 shows that this assumption Is only correct for a dry slope of llmlted helght. Any bulld-up of water pressure within the dump causes a serlous reduction In the stable face angle and, once the normal stress across the potential fal lure surface becomes high enough for the next tangent to become operative, the high initlal friction angle no longer appl les and the dump face assumes a flatter angle.

Tangent number 2

Plottlng these values on Figure 9.10 glves the curves numbered 2 for the dralned and the wet dumps.

Tangent number 3

The relatlonships between dump face angle and dump helght, for both dralned and wet dumps, are glven by the envelopes to the curves der 1 ved from tangents 1,2 and 3 . These envelopes, shown In figure 9.10, Illustrate the danger In continulng to Increase the height of a dump on the sssumptlon that It will remaln stable at an angle of repose equal to the friction angle. The dangers arsoclated $w l^{\text {th }}$ poor dump dralnage are also evident In thls figure.

The reader who attempts thls type of analysis for hl mse If, and It is strongly recommended that he should, wil I find that the slope helght versus slope angle relationship is extremely sensitive to the shape of the shear fallure curve. Thls emphasizes the need for rellable in situ shear test methods such as those
described by McKechnle Thompson and Rodln(240) and Schultze and Horn(244) to be further developed for application to waste dump problems.

Blshop's and Janbu's methods of slices

The circular fal lure charts presented earl ier In thls chapter are based upon the assumptions that the materlal forming the slope has un I form properties throughout the slope and that fallure occurs along a circular fal lure path passing through the toe of the slope. When these condlions are not satisfled Is Is necessary to use one of the methods of sllces publ ishod by Blshop(213), Janbu(217), Nonvell|er(224), Spencer(228), Morgenstern and Prlce(222) or others. WIth the wide avallablllty of programable calculators and computers, the lteratlve procedure required In obtalning a factor of safety by one of these methods of sl Ices is no longer as tedious as It once was and there Is no excuse for not using one of these methods If It Is approprlate for the problem under consideration.

The slope and fallure surface geometries and the equations for the determination of the factor of safety by the Blishop simpllfled method of slices (213) and the Janbu modif led method of silces(217) are glven In Figures 9.11 and 9.12 respectlvely. Bishop's method assumes a clrcular fal lure surface whl le that of Janbu assumes that the fal lure surface can be of a general shape. As pointed out by Nonvelller(224), Janbu's method gives reasonable factors of safety when applied to shal low silp surfaces (which are typical In rocks with an angle of friction In excess of 30°) but it is serlousiy In error and should not be used for deep silp surfaces In materlals with low friction angles.

The procedures for using Blshop's md Janbu's methods of sllces are very similar and It is convenient to discuss them together. Note that the form of the equations glven In FIgures 9.11 and 9.12 has been designed to facllitate programing on a calculator such as a Hewlett-Packard 67.

Step 1: Slope and fallure surface geometry

The geometry of the slope is deflned by the actual or the designed proflle as seen in a vertical section through the slope. This profile should be reproduced as accurately as possible on a drawing to a convenlentlylarge scale. In the case of a circular failure, the charts glven In flgures 9.5 a and b can be used to estlmate the center of the clrcle with the lowest factor of safety. In the Janbu analysis, the failure surface may be defined by known structural features or weak zones within the rock or sol I mass or It may be estimated In the same way as that for the Bishop analysis. In elther case, the tallure surface assumed for the flrst analysis may not glve the lowest factor of safety and the user shou Id be prepared to repeat the entire calculation a number of tlmes In order to find the fallure surface with the lowest factor of safety.

Step 2: S I Ice parameters

The sllding mass assumed In slice 1 ls divided Into a number of sllces. Generally, a minlmum of flve slices should be used for very slmple cases. For complex slope profiles or a large number of different materlals In the rock or

Note : Angle a is negative when sliding is uphill.

Factor of Safety :

$$
F=\frac{\sum^{X} /(1+Y / F)}{\sum Z+Q}
$$

where

$$
\begin{aligned}
& X=\left(c^{\prime}+\left(y h-\gamma_{w} h_{w}\right) \operatorname{Tan} \phi^{\prime}\right)^{\Delta x} /_{\operatorname{Cos} \alpha} \\
& Y=\operatorname{Tan} a \operatorname{Tan} \phi^{\prime} \\
& Z=r h \Delta x \sin \alpha \\
& Q=\frac{1}{2} \gamma_{w} z^{2} a_{R}
\end{aligned}
$$

The following conditions must be satisfied for each slice :

1) $\sigma^{\prime}=\frac{\gamma^{h}-\gamma_{w} h_{w}-c^{\prime} \operatorname{Tan} a / F}{1+Y / F}>0$
2) \cos a $(1+Y / F)>0.2$

Figure 9.11: Bishop's simplifled method of slices for analysis of circular failure in slopes cut into materials in which failure ls defined by the Mohr-Coulamb failure criterion.

Note: Angle a is negative when
sliding is uphill.
Factor of Safety :

$$
F=\frac{f_{o}[X /(1+Y / F)}{[Z+Q}
$$

where

$$
\begin{aligned}
& x=\left(c^{\prime}+\left(\gamma h-\gamma_{w} h_{w}\right) \operatorname{Tan} \phi^{\prime}\right)\left(1+\operatorname{Tan}^{2} \alpha\right) \Delta x \\
& Y=\operatorname{Tan} a \operatorname{Tan} \phi^{\prime} \\
& z=\gamma h \Delta x \operatorname{Tan} \alpha \\
& Q=\frac{1}{2} \gamma_{w} z^{2}
\end{aligned}
$$

Approximate correction factor f_{0}

$$
f_{0}=1+K\left(d / L=1.4(d / L)^{2}\right)
$$

$$
\text { for } \begin{aligned}
c^{\prime} & =0 ; K=0.31, \\
c^{\prime} & >0, \phi^{\prime}>0 ; K=0.50
\end{aligned}
$$

Figure 9.12: Janbu's modified method of slices for the analysis of non-circular failure in slopes cut Into materials in which failure ls defined by the Mohr-Coulomb failure criterion.
soll mass, a larger number of sl Ices may be required In order adequately to defline the problem. The par ameters which have to be def ined for each slice are the angle α of the base of the slice, the vertical stress on the base of the sllce glven by the product of the vertlcal helght h and the unlt welght γ of the rock or soll, the upllft water pressure glven by the product of the helght h_{w} to the phreatlc surface and the unit weight\&of water and the width of the slice Δx.

Step 3: Shear strength parameters

The shear strength acting on the base of each silice is required for the stablilty calculation. In the case of a unlform material in which the fallure criterion is assumed to be that of Mohr-Cou lomb (equation (10) on page 5.2), the shear strength parameters c^{\prime} and $\phi^{\prime} \mathbf{w l i l l}^{\prime}$ be the same on the base of each slice. When the slope is cut Into a rock or sol I mass made up of a number of mater I a I s, the shear strength parameters for each slice must be chosen accordIng to the materlallnwhich It lles. When the shear strengths of the materials forming the slope are def Ined by non-linear fallure crlterlasuch as that glven by equation (30) on page 5.25 It Is necessary to determine an Instantaneous cohesion $\mathrm{c}_{\boldsymbol{i}}$ and an Instantaneous fr Ict Ion angle ϕ_{i} for each slice. This determination requires a knowledge of the ef fectlive normal stress act Ing on the base of each sllce and thls problem wll|be discussed later In this chapter.

Step 4: Factor of safety Iteration

When the slice parameters and the shear strength parameters have been defined, the values of X, Y, and Z are calculated for each silce. The water force Q 1 s added to ΣZ, the sum of the components of the welght of each silce acting parallel to the fal lure surface. An initiales timate of $F=1.00$ for the factor of safety Is used In the solution of the factor of safety equations glven In FIgures 9.11 and 9.12. If the difference between the calculated and the assumed factors of safety Is greater than 0.001, the calculated factor of safety Is used as a second estlmate of F for a new factor of safety calculation. This process is repeated untl I the dif ference between successlve factors of safety Is less than 0.001. For both the Blshop and the Janbu methods, approximately 7 itoration cycles will be required to achieve thls result for most slope and fallure surface goometries.

Step 5: Condltlons and correctlons

Figure 9.11 llsts two condltions which must be satisf led for each slice In the Blshop analysis. The first condtlon ensures that the offective normal stress on the base of each slice Is always positive. If this condition is not met for any slice, the Inclusion of a tenslon crack Into the analysis should be considered. If It is imposslole to satisfy thls condition by readjustment on the groundwater conditions or the introduction of a tension crack, the analysls as presented In Figure 9.11 should be abandoned and a more elaborate form of analysls, to be described later, adopted.

Condltion 2 In Flgure 9.11 was suggested by Whltman and Balley(233) and It ensures that the analysts is not Invalldated by conditions rhich can sometimes occur near the toe of a slope In which a deep fal lure surface has been assumed. If thls condition Is not satlsf led by al I sI Ices, the sllice dlmensions should be changed and, If this falls to resolve the problem, the analysls should be abandoned.

Figure 9.12 gives a correction factor which Is used In calculating the factor of safety by means of the Janbu method. Thls factor al lows for interslice forces resultIng from the shape of the fallure surface assumed in the Janbu analysis. The equation for fo glven In Figure 9.12 has been derlved by the authors from the curves publlshed In Janbu(217).

Use of non-llnear fallure crlterlon

When the matertal in which the slope is cut obeys the nonlinear failure criterion defined by equation (30) on page 5.25 the Bishop simplitled method of sllces as outlined In flgure 9.13 can be used to calculate the factor of safety. The fallowing procedure is used, once the slice parameters have been deflned as described earller for the Blshop and Janbu analyses:

1) Calculate the effective normal stress σ^{\prime} acting on the base of each sl lce by means of the Fel lenlus equation given In Flgure 9.13.
2) Using thls value of σ^{\prime}, calculate $\operatorname{Tan} \phi_{i}^{\prime}$ and c_{i}^{\prime} from the equations glven In Figure 9.13.
3) Substltute these values of $\operatorname{Tan} \varnothing_{i}^{\prime}$ and c_{i}^{\prime} Into the factor of safety equation In order to obtaln the first est imate of the factor of safety.
4) Use thls estimate of F to calculate a new value of σ^{\prime} on the base of each sllce, using the Bishop equation given In FIgure 9.13.
5) On the basis of this new value of σ^{\prime}, calcuiate new values for $\operatorname{Tan} \phi_{i}{ }^{\prime}$ and $c_{i}{ }^{\prime}$.
6) Check that conditions 1 and 2 (FIgure 9.13) are satisfled for each slice.
7) Calculate a new factor of safety for the new values of Tan $\phi_{i}{ }^{\prime}$ and c_{i}^{\prime}.
8) If the difference between the first and second ffactors of safety Is greater than 0.001 , return to step 4 and repeat the analysis, using the second factor of safety as Input. Repeat this procedure until the difference between successlve factors of safety Is less than 0.001.

Generally, about ten iterations wlil be required to achleve the required accuracy In the calculated factor of safety.

Note: Angle a is negative when

Factor of Safety :

$$
F=\frac{\Sigma\left(c_{i}^{\prime}+\sigma \cdot \operatorname{Tan} \phi_{i}\right) \frac{\Delta x}{\cos a}}{\sum \gamma h \Delta x \sin \alpha+\frac{1}{2} \gamma_{w} z^{2} \cdot a / R}
$$

where

$$
\sigma^{\prime}=y h \cos ^{2} a=\gamma_{w} h_{w}
$$

(Fellenius solution)
and

$$
a^{\prime}=\frac{r h=\gamma_{w} h_{w}-\frac{c_{i}^{\prime \prime} \operatorname{Tan} \alpha}{F}}{1+\frac{\operatorname{Tan} \phi_{i}^{\prime \prime} \operatorname{Tan} a}{F}} \text { (Bishop solution) }
$$

The instantaneous friction angle $\phi_{i}{ }^{\prime}$ and the instantaneous cohesion $c_{i}{ }^{\prime}$ are given by :

$$
\begin{aligned}
& \operatorname{Tan} \phi i^{\prime}=A B\left(\sigma^{\prime} / \sigma_{c}=T\right)^{B-I} \\
& c_{i}^{\prime}=A \sigma_{c}\left(\sigma^{\prime} / \sigma_{c}=T\right)^{B}=\sigma^{\prime} \operatorname{Ten} \phi_{i}{ }^{\prime}
\end{aligned}
$$

The conditions which must be satisfied for arch slice are :

1) $\sigma^{\prime}>0$, where σ^{\prime} is calculated by Bishop's method
2) $\operatorname{Cos} \alpha\left(1+\operatorname{Tan} \alpha \operatorname{Tan} \phi_{i}{ }^{\prime} / F\right)>0.2$

Figure 9.13: Bishop's simplified method of slices for the nelysls of circular failure in slopes cut into materiels in which faliure is defined by the non-linear failure criterion given in equation (30) on page 5.25.

Example of the use of Blshop's and Jenbu's methods of analysls

A slope is to be excavated In a highly weathered granltic rock mass. The slope, I I lustrated In the margin drawing on page 9.26, Is to consist of three 15 m high benches with two 8 m wide berms. The bench faces are Incl Ined at 75° to the horlzontal and the top of the slope is cut at 45° from the top of the third bench to the natural ground surface.

A classiflcation of the rock mass and the use of the resulting Index to estlmate the material propertles from Table IV on page 5.26 glves the fol lowing values for the constants def Ined In equation (30) on page 5.25:

$$
A=0.203, B=0.686 \text { and } T=-0.00008
$$

The unlaxlal compressive strength σ_{c} of the intact rock pleces Is estlmated at 150 MPa from polnt load testing. The unlt welght of the rock mass is assumed to be $\gamma=0.025 \mathrm{MN} / \mathrm{m}^{3}$ and the unlt weight of water $\gamma_{w}=0.010 \mathrm{mN} / \mathrm{m}^{3}$.

In order to estimate the position of the critical fallure surface and to carry out a Blshop and Janbu analysis, a tangent to the curved Mohr envelope Is drawn at a normal stress level estlmated from the slope geometry. This tanaent Is deflned bv, a friction anale $\varnothing=45^{\circ}$ and a cohesive strength $\mathrm{c}=0.14 \mathrm{MPa}$.

Slice parameters for all cases					Mohr-Coulomb values for Bishop ε Janbu analyses		Non-linear failure criterion values for Bishop analysis (8th iteration)		
$\begin{aligned} & \text { Slice } \\ & \text { nwnber } \end{aligned}$	Anqle a degrees	Vertical stress yh MPa	Uplift $\gamma_{w} h_{w} \mathrm{MPa}$	$\begin{aligned} & \text { Slige } \\ & \text { width } \\ & \Delta x \mathrm{~m} \end{aligned}$	Priction angle ϕ^{\prime} degs.	Cohesion $c^{\prime} \mathrm{MPa}$	Normal stress $\sigma^{\prime} \mathrm{MPa}$	Inst. Frict. $\Phi_{i}{ }^{10}$	Inst. Cohesion $c_{i}{ }^{\prime}$ MPa
1	62	0.663	0.075	4.0	45	0.14	0.176	48.6	0.111
2	55	0.769	0.125	6.5	45	0.14	0.251	45.6	0.135
3	44	0.794	0.150	8.5	45	0.14	0.327	43.3	0.158
4	36	0.625	0.140	4.0	45				
5	31	0.544	0.125	8.0	45	0.140 .14	0.2730 .253	44.945 .6	0.1420 .136
6	25	0.438	0.095	4:0	45	0.14	0.224	46.6	0.127
7	20	0.313	0.060	8.0	45	0.14	0.174	48.7	0.111
8	12	0.188	0.002	4.0	45	0.14	0.145	50.2	0.101

Using the slice parameters and shear strength values tabulated above, the factor of safety for the slope under conslderation have been calculated by three methods. The successive factor of safety estlmates are:

Blshop slmplifled method of sllces for Mohr-Coulomb fallure
$1.000,1.237,1.353,1.402,1.421,1.428,1.430,1.431$
Janbu modif led method of sllces for Mohr-Coulomb fal lure
$1.000,1.207,1.315,1.364,1.385,1.393,1.397,1.398,1.399$
Blshop simplified method of slices for non-I Inear fal lure
$1.271,1.353,1.396,1.413,1.420,1.422,1.423,1.423$
Of these three analyses, the last which utllizes the non-linear fallure criterion, Is regarded as correct for thls particular appllication.

Chapter 9 references

21	COLDER. H.Q. The stability of natural and man-made slopes in soil and rock. Cootechnical Practice for Stability in Open Pit Mining. Editors Brawner, C.O. and Milligan, V. AIME, New York, 1972. pages 79-85.
211.	terzaghi,k. Theoretical Soil Mechanics. Wiley, New York, 1943.
212.	LAMBE, W.T. and WHITMAN, R.V. Soil Mechanics. Wiley, New York. 1969, 553 pages.
213.	BISHOP. A.W. The use of the slip circle in the stability analysis of earth slopes. Ceotechnique. Vol.5. 1955 . pages 7-17.
214.	BISHOP, A.W. and HORGENSTERN, N. Stability coefficients for earth slopes. Geotechnique. Vol.10, 1960. pages 29-150.
215.	FELLENIUS, W. Calculation of the stability of earth dams. Trans. 2nd Congress on Large Dams. Washington, Vol.4. 1936 . page 445.
216.	FROHLICH, O.K. General theory of the stability of slopes. Ceotechnique. Vol.5, 1955. pages 37-47.
217.	JANBU, N. Application of composite slip circles for stability analysis. Proc. European Conference a Stability of Earth Slopes. Stockholm, Vol.3, 1954, pages 43-49.
218.	JANBU, N. Stability analysis of slopes with dimensionless parameters. D.Sc. Thesis. Harvard Soil Mechanics Series. No.46, 1954 . 81 pages.
219.	LOWE, J. Stability analysis of embankments. J. Soil Mech. Foundation Div. ASEE Vol.93, No.SM4, 1967 , pages 286-299.
220.	HEYERHOF, C.G. The mechanism of flow slides in cohesive soils. Geotechnique. Vol.7, 1961, pages21-31.
221.	MENCL, V. The influence of the stiffness of aliding mass on the stability of slopes. Rock Mechanias and Engineering Geology. Vol.4, 1966. pages 127-131.
222.	HORGENSTERN, N.R. and PRICE. V.E. The analysis of the stablilty of general slip surfaces. Geotechnique. Vol.15, 1965. pages 79-93.
223.	HORGENSTERN, N.R. Stability charts for earth slopes during rapid drawdown. Geotechnique. Vol.13. 1963. pages 121-131.
224.	NONVEILLER,E. The stability analysis of slopes with a slip surface of general shape. Proc. 6th Intnl. Conf. Soil Mech. Foundation Engg, Montreal. Vol.2, 1965, page 522.
225.	PECK, R.B. Stability of natural slopes. Proc. ASCE. Vol.93, No.SM 4. 1967, pages 403-417.

226. RODRIGUEZ, A. Analysis of slope stability. Proc.
5th Intnl. Conf. Soil Mech. Foundation Engg. Paris. 1961, Vol.2, page 709.
227. SPENCER, E. Circular and logarithmic spiral slip surfaces. J. Soil Mech. Foundation Div. ASCE. Vol. 95. No. SM 1, 1969, pages 227-234.
228. SPENCER, E. A method of analysis of the stability of embankments assuming parallel inter-slice forces. Ceotechnique. Vol.17,1967, pages 11-26.
229. TAYLOR, D.W. Stabi 1 ity of earth slopes. d. Boston Soc. Civil Engineers. Vol.24, 1937, page 197.
230. TERZAGHI, K. Critical height and factor of safety of slopes against sliding. Proc. Intnl. Conf. Soil Mechanics. Cambridge, Mass. 1936, Vol.I, pages 156-161.
231. VERGHESE, P.C. Investigations of a new procedure for analysing the stability of slopes. M.Sc. Thesis, Harvard University . 1949.
232. VISHER, D. Use of moment planimeter for analysis of slope stability. (in German). Schwerz. Bauztg. Vol.8ı, No. 12, 1963, pages 183-187.
233. WHITMAN, R.V. and BAILEY, W.A. The use of computers for slope stability analysis. J. Soil Mech. Foundation Engg, $A S C E$. Vol.93, No.SM 4, 1967. pages 475-498.
234. SKEHPTDN. A.W. The $\phi \boldsymbol{0}$ analysis for stability and its theoretical basis. Proc. 2nd Intnl. Conf. Soil Mech. Foundation Engg. Rotterdam. Vol.1, 1948, page 72.
235. BISHOP, A.W. and BJERRUM. L. The relevance of the triaxial test to the solution of stability problems. Proc. ASCE Conf. on shear strength of cohesive soils. Boulder, Colorado. 1960, pages 437-501.
236. CASAGRANDE, L NIherungsverfahren zur Ermittlung der Sickerung in geschutteten Dammen auf underchlyssiger Sohle, Die Bautechnik. Heft 15, 1934.
237. HAN. C. The technique for obtaining equipotential lines of groundwater flow in slopes using electrically conducting paper. M.Sc. Thesis, London University (Imperial College), 1972.
238. JANBU, N., BJERRUM. L and KJAERNSLI, B. Soilmechanics applied to some engineering problems. (in Norwegian with an English summary). Norwegian Ceotechnical Inst. Publ. 16, 1956.
239. Report of the tribunal appointed to enquire into the disaster at Aberfan on October 21st, 1966. Her Majesty's Stationery Office, London. 1968.
240. MCKECHNIE THOMPSON, G. and RODIN, S. Colliery spoil tips - after Aberfan. Inst. Civil Engineers, London. 1972. Paper 7522. 60 pages.
241. NATIONAL COAL BOARD. Technical handbook on spoil heap8 and Zagoons. National Coal Board Mining Department. London. Final Draft 1970, 233 pages.
242. CHINA CLAY ASSOCIATION. China Clay industry technical handbook for the disposal of waste materials. China Clay Association. St. Austell, Cornwall, 1971, 82 pages.
243. CANADIAN DEPARTHENT OF ENERGY, MINES AND RESOURCES. Tentative deeign guide for mine waste embankments in Conada. Mining Research Centre, Canadian Department of Energy, Hines and Resources. Ottawa. Final Draft. May, 1971, 185 pages.
244. SCHULTZE, E. and HORN, A. The base friction for horizontally loaded footings in sand and gravel. Ceotechnique. Vol.17, 1967, pages 329-347.

Chapter 10: Toppling failure

Suggested toppling failure mechanism of the north face of the Vajont slide. After MuZZer ${ }^{245}$.

Deep vide tension cracks are associated with toppling failure in hard rock slopes.
Photograph by R.E. Goodman.

Introduction

The failure modes discussed in previous Chapters of this book are all related to the sliding of a rock or soil mass along an existing or an induced failure surface. On page 2.13 brief mention was made of a different failure mode - that of toppling. Toppling failure involves rotation of columns or blocks of rock about some fixed base and the simple geometrical conditions governing the toppling of a single block on an inclined surface were defined in Figure 2.5 on page 2.14.

Toppling failures in hard rock slopes have only been described in literature during the past few years. One of the earl iest references is by Muller(245) who suggested that block rotation or toppling may have been a contributory factor in the failure of the north face of the Vajont slide. Hofmann(246) carried out a number of model studies under Muller's direction to investigate block rotation. Similar model studies were carried out under the authors' direction at Imper i al Col lege by Ashby (247), Soto(248) and Whyte(249) while Cundal l(250) made one of the earliest attempts to study the problem numerically. Burman (251), Byrne(252), and Hammett(253), all of the James Cook University of North Queensland in Australia, made significant contributions to the understanding of this problem and to the incorporation of rotational tailure modes into computer analysis of rock mass behavior. An excellent descriptive paper on toppling failures in the United Kingdom by de Freitas and Watters(254) is recommended reading and Wyl I ie(255) has discussed examples of toppling associated with railroads. Most of the discussion which follows in this chapter is based on a paper by Goodman and $\operatorname{Bray}(256)$ in which a formal mathematical solution to a simple toppling problem is attempted. This solution, which is reproduced here, is believed to represent a basis for the development of methods for designing rock slopes in which toppling is present. Several years of development work will be necessary before these methods can be used with the same degree of confidence as other methods of stability analyses described in this book.

Types ot toppling failure

Goodman and Bray have described a number of different types of toppling failures which may be encountered in the field and each of these types is discussed briefly on the following pages.

Flexural toppling

The process of flexural toppling is illustrated in Figure 10.1 which shows that continuous columns of rock, which are separated by well developed steeply dipping discontinuities, break in flexure as they bend forward. An example of this type of failure is illustrated in the photograph in the margin on page 2.13 which shows a large flexural topple in the Dinorwic slate quarry in North Wales. The example illustrated in Figure 10.1 is in the Penn Rynn slate quarry in North Wales.

Sliding, undermining or erosion of the toe of the slope al lows the toppling process to start and it retrogresses backwards into the rock mass with the formation of deep, wide tension cracks. The lower portion of the slope is covered with dis-

Figure 10.1 : Flexural toppling occurs in hard rock slopes with well developed steeply dippirg discontiruities. Photograph by R.E.Goodman.

Figure 10.2 : Interlayer sliding between toppling columns
results in a series of back facing or obsequent scarps in the upper surface of
the rock slope.
Photograph by R.E.Goodman.

Compter generated mode 1 of topping failure by Cundall250. solicioiocks are fixed in space.
oriented and disordered blocks and It is sometimes very difficult to recognize a toppling fal lure from the bottom of the slope.

The outward movement of each cant1 levered column produces an Interlayer silp and a portlon of the upper surface of each plane Is exposed in a series of back facing or obsequent scarps such as those lllustrated In FIgure 10.2.

Block topplling

As Illustrated in Flgure 10.3, block toppling occurs when Individual columns of hard rock are divided by widely spaced orthogonal joints. The short columns forming the toe of the slope are pushed forward by the loads from the longer overturning columns behind and this sllding of the toe allows further toppling to develop higher up the slope. The base of the fal lure Is better defined than that In a flexural topple and it generally consists of a stalrway rising from one cross jolnt to the next.

Block-flexure toppling

As shown In Flgure 10.4 thls type of toppling fallure ls characterized by pseudo-continuous flsxure along long columns which are divided by numerous cross jolnts. Instead of the f I exura I fallure of contlnuous columns, resulting In flexural toppling, the toppling of the columns In thls case results from accumulated displacements on the cross jolnts. Because of the large number of small movements In this type of topple, there are fewer trnslon cracks than In flexural toppl Ing and fewer edge-to-face contacts and volds than In block toppling.

SECONDARY TOPPLING MOOES

Flgure 10.5 Illustrates a number of possible secondary toppling mechanisms suggested by Goodman and Bray. In general, these fallures are inltlated by some undercutting of the toe of the slope, olther by natural agencies such as erosion or weathering or by the octivitles of man. In all cases, the primary fallure mode Involves sllding or physical breakdown of the rock and toppl Ing Is Induced In some part of the slope as a resu It of this prlmary fal lure.

ANALYSIS OF TOPPLING FAILURE

Goodman(24) has publ Ished a detal led discussion on the base friction modelling technique which Is an Ideal tool for simple physical model studles of toppl Ing phenomena. As II lustrated In FIgure 10.6, the apparatus consists of a base and frame to hold a palr of wide rollers over whlch a sanding belt runs. This sanding belt applies a friction force to the underside of the model resting on the belt and, If the base of the model Is prevented from moving, the base friction forces will simulate the gravitational loads of the Individual blocks which make up the model. Block toppling In models made from cork, plaster, plastlc blocks or wooden blocks can be studied by means of thls technlque and the type of behavior I I I ustrated In the computer generated margin drawing can be simulated very easlly.

Whl le this method is Ideal for demonstration and teaching purposes, its value as a design tool for rock slope enginsering

Figure 10.3 : Block toppling can occur in a hard rock mass with widely spaced orthogonal joints.

Photograph by R.E.Goodman.

Figure 10.4 : Block flexure toppling is'characterised by pseudocontinuous flexure of long columns through accumulated motions along numerous cross joints.

Photograph by R.E.Goodman.

Figure 10.5 : Secondary toppling mechanisms suggested by Goodman and Bray.

Figure 10.6 : Base friction model apparatus which can be used for demonstrating toppling effects in block models.

Incipient toppling failure in a steeply jointed hard rock slope. Photograph by R. E. Goodman.

Is Imited because studes on the sensitivity of the slope to small changes In geometry become very tedious. In addition, the range of physlcal properties which can be Incorporated Into the model is limitad by avallale modelling materials.

Attempts to overcome these problems by modelling toppling processes numerlcally have been made by Cundali(250), Byrne(252) and Hanmett(253) and, while the results of these studles have been very promising, the numerical techniques are demanding on computer storage and time and these methods are not yet sultable for general ongineering use. The authors belleve that these numerlcal methods wlil eventually become practical design tools, partlcularly the computer graphlcs technlques being explored by Cundallat the Unlvwsity of Minnesota.

The method of analysis described below ut Illises the same principles of limiting equillibrium which have been used throughout the remainder of this book and, whl le the solution Is IImIted to a few slmple cases of toppling failure, it should provide the reader with a basic understanding of the factors whlch are Important In toppling sltuations.
LImit equllibrlum analysis of toppling on a stepped base
Consider the regular system of blocks shown In Flgure 10.7 In which a slope angle 6' Is excavated In a rock mass with layers dipping at $90-\mathrm{a}$. The base is stepped upwards with an overall Inclination β. The constants a_{f}, a_{2} and b shown in the figure are glven by

$$
\begin{align*}
& a_{j}=5 x \cdot \operatorname{Tan}(\theta-\alpha) \tag{98}\\
& a_{2}=5 x . \operatorname{Tan} \alpha \\
& b=A x \cdot \operatorname{Tan}(\beta-\alpha)
\end{align*}
$$

$$
a_{2}=5 x . \operatorname{Tan} \alpha
$$

where Δ_{X} is the width of each block.
In this idealized model, the nelght of the nth block In a positlon below the crest of the slope is

$$
y_{n}=n\left(a_{1}-b\right)
$$

(101)
whl le above the crest

$$
\begin{equation*}
y_{n}=y_{n-1}-a_{2}-b \tag{102}
\end{equation*}
$$

When a system of blocks, having the form shown In Flgure 10.7, commences to fal I, It is generally possible to distingulsh three separate groups according to their mode of behavior:
a) a set of sllding blocks In the toe reglon,
b) a set of stable blocks at the top, and
c) en intermedlate set of toppling blocks.

With certaln geometries, the sllding set may be absent In wich case the toppling set extends down to the toe.

Figure 10.8 a shows a typlcal block $(n) w l h$ the forces developed on the base (R_{n}, S_{n}) and on the Interfaces with adjacent blocks ($\left.P_{n}, P_{n}, P_{n-1}, A_{n-1}\right)$.

When the block Is one of the toppling set, the polnts of appllcatlon of all forces are known, as shown In Flgure 10.8b.

If the nth block is below the slope crest:

$$
\begin{aligned}
& M_{n}=y_{n} \\
& L_{n}=y_{n}-a_{j}
\end{aligned}
$$

Figure 10.7 : Model for limiting equillbrium analysis of toppling ona stepped base.

c) Sliding of nth block
$P_{n-1}=P_{n}=\frac{W_{n}(\operatorname{Tan\phi } \cdot \operatorname{Cos} \alpha-\sin a)}{1-\operatorname{Tan}^{2} \phi}$

Figure 10.8: Limiting equilibrium conditions for toppling and for sliding of the nth block.

If the nth block is the crest block:

$$
\begin{align*}
& M_{n}=y_{n}-a_{2} \tag{105}\\
& L_{n}=y_{n}-a_{1}
\end{align*}
$$

If the nth block is above the slope crest:

$$
\begin{aligned}
& M_{n}=y_{n}-a_{2} \\
& L_{n}=y_{n}
\end{aligned}
$$

In allcases $K_{n}=0$
For an Irregular array of blocks, Y_{Π}, L_{Π} and M_{Π} can be determlned graphically.

For llmiting frlction on the sldes of the block:

$$
\begin{aligned}
& \varphi_{n}=\rho_{n} \cdot \operatorname{Tan} \phi \\
& \rho_{n-1}=\rho_{n-1} \cdot \operatorname{Tan} \phi
\end{aligned}
$$

By resolving perpendicular and parallel to the base,

$$
\begin{align*}
& R_{n}=w_{n} \cdot \cos \alpha+\left(P_{n}-P_{n-1}\right) \tan \phi \\
& \operatorname{Sn}=W_{n} \cdot \sin \alpha+\left(P_{n}-P_{n}-1\right)
\end{align*}
$$

Considering rotational equlilibrlum, It is found that the force Pn-s which is just sufficlent to prevent toppling has the value

$$
P_{n-1, t}=\frac{P_{n}\left(M_{n}-\Delta x \cdot \tan \phi\right)+\left(W_{n} / 2\right)\left(y_{n} \cdot \operatorname{Sin} \alpha-\Delta x \cdot \cos \alpha\right)}{L_{n}}
$$

When the block under cons1 derat lon Is one of the sl Id Ing set,

$$
\begin{equation*}
S_{n}=R_{n} \cdot \operatorname{Tan} \phi \tag{113}
\end{equation*}
$$

However, the magnltudes and polnts of appl icatlon of al l the forces appl led to the sldes and base of the block are unknown. The procedure suggested here Is to assume that, as In the toppling case, conditions of IImlting equillbrlum are establlshed on the side faces so that equations (110) and (111) apply. Taken In conjunctionwith (113), these show that the force $P_{n-\boldsymbol{l}}$ which Is Just sufficient to prevent sllding has the value

$$
P_{n-1, s}=P_{n}-\frac{W_{n}(\operatorname{Tan} \phi \cdot \cos \alpha-\sin \alpha)}{l-\operatorname{Tan}^{2} \phi}
$$

The assumption introduced here is quite arbltrary, but a lit+le consideration will show that it has no effect on calculations of the overall stabllity of the slope. Any other reasonable assumptlon would produce the same results.

Calculation procedure
Let $\boldsymbol{r}_{\boldsymbol{l}}=$ uppermost block of the topp I Ing set,
$\boldsymbol{r}_{2}=$ uppermost block of the sllding set.
a) To determine the value of \varnothing for $1 \mathrm{~lm} \| \mathrm{i}$ ing equllibrlum.

1) Assume a reasonable value of $\boldsymbol{\phi}$, such that $\boldsymbol{\phi}>\boldsymbol{\alpha}$.
2) Establish n_{f} by determining the uppermost block of the whole group which satisfles the condition

$$
y_{n} / \Delta x>\operatorname{Cot} \alpha
$$

3) Starting with this block, determine the lateral forces $P_{7-1, t}$ required to prevent toppl lng and $P_{n-f, s}$ to prevent sl IdIng.

If $P_{n-1, t}>P_{n-1, s}$, the block Is on the polnt of toppllng and P_{n-1} is set equal to $P_{n-1, t^{\prime}}$.

If P_{n-1} s $>P_{n-1}, t$, the block is on the polnt of sildIng and P_{n-1} is set equal to $P_{n-1,}$,

For this particular block, and al lother tall blocks of the system, It wII I be found that the toppl Ing mode Is crltical, and this check Is purely a matter of routine. It is requilred at a later stage to determine r_{2} which deflnes the upper $\mid 1 m \|^{+}$of the sllding sectlon. Further checks should be carried out to ensure that

$$
\begin{aligned}
& P_{n}>0 \\
& \left|S_{n}\right|<R_{n} \cdot \operatorname{Tan}
\end{aligned}
$$

4) The next lower block $\left(n_{1}-l\right)$ and al the lower blocks are treated \ln success ion, uslng the same procedure.
5) Eventually a block may be reached for which $\rho_{\eta-\gamma, s}>$ Pn-1,t. This establlshes block n_{2}, and for thlis and al l'lower blocks, the critlcal state is one of sliding. If the cond It lon $P_{7-1, s}>P_{n-r}, t$ Is not met for any of the blocks, the sllding se+ is absent and toppling extends down to block 1.
6) Considering the toe block 1 :

If $P_{0}>0$, the slope Is unstable for the assumed value of $\mathscr{\infty}$. It Is necessary to repeat the calculations for an Increased value of \varnothing.

If $P<O$, repeat the calculations with a reduced value of \varnothing.

When Po is sufficlentiy small, the corresponding value of \varnothing can be taken as that for I ImItIng equil Ibrlum.
b) To determine the cable force required to stabllise a slope.

Suppose that a cable Is Instal led through block 1 at a d I stance L_{1} above Its base. The cable Is incilined at an angle6 degrees below horlzontal and anchored a safe distance below the base. The tension In the cable required to prevent toppling of block 1 Is

$$
T_{t}=\frac{\left(w_{1} / 2\right)\left(y_{1} \cdot \operatorname{Sin} \alpha-\Delta x \cdot \cos \alpha\right)+P_{f}\left(y_{y}-A x \cdot \operatorname{Tan} \phi\right)}{L_{j} \cdot \cos (\alpha+\delta)}
$$

while the tension \ln the cable to prevent sllding Is

$$
T_{5}=\frac{\rho_{1}\left(1-\operatorname{Tan}^{2} \alpha\right)-W_{n}(\tan \phi \cdot \cos \alpha-\sin \alpha)}{\operatorname{Tan} \phi \cdot \sin (\alpha+\delta)+\cos (\alpha+\delta)}
$$

The norma I and shear force on the base of the block are respectively:

$$
\begin{aligned}
& R_{1}=P_{1} \cdot \operatorname{Tan} \phi+T_{1} \cdot \sin (\alpha+\delta)+W_{1} \cdot \cos \alpha \\
& 5,=P_{1}-T_{\cdot} \cos (\alpha+\delta)+W_{1} \cdot \sin \alpha
\end{aligned}
$$

The procedure In thls case Is Identical to that described above apart from the calculations relating to block 1. The rrquired tension Is the greater of T_{L} and T_{S} defined by equations (115) and (116).

EXAMPLE
An Ideallzed example Is lllustrated In FIgure 10.9. A rock slope 92.5 m high is cut on a 56.6 , slope In a layered rock mass dipplng at 60° Into the hl II. A regular system of 16 blocks Is shown on a base stepped at Im In every 5 (angle $\beta-\alpha$ $=5.8^{\circ}$). The constants are $a_{i}=5.0 \mathrm{~m}, a_{2}=5.2 \mathrm{~m}, \mathrm{~b}=1.0$ $m, \Delta x=10.0 \mathrm{~m}$ and $\gamma=25 \mathrm{kN} / \mathrm{m}^{3}$. Block 10 Is at the crest which rises 4° above the horlzontal. Since $\operatorname{Cot} \alpha=1.78$, blocks 16, 15 and 14 comprise a stable zone for al l cases in whlch $\phi>30^{\circ}(\operatorname{Tan} \phi>0.577)$.

In this example, Tanø is set as $0.7855, P_{/ s}$ is then equal to 0 and P_{12} calculated as the greater of $P_{12 . t}$ and $P_{12 .}$ g glven by equations (112) and (114) respectively. As shown in the table glven on page 10.12, P $P_{n-1, t}$ turns out to be the larger unt 111 a value of $n=3$, whereupon $\rho_{n-1.5}$ remalns larger. Thus blocks 4 to 13 constitute the potential toppling zone and blocks 1 to 3 constltute a sllding zone.

The force required to prevent sllding In block 1 tends to zero which indicates that the slope is very close to IImiting equililbrlum. The instal led tension requirrd to stablilse block 1 Is 0.5 kN per meter of slope crest length, as compared with the maximum value of P (\mid n block 5) equal to $4837 \mathrm{kN} / \mathrm{m}$.

If Tan \varnothing Is reduced to 0.650 , It $w \mid I$ be found that blocks 1 to 4 In the toe region wlll slide whlie blocks 5 to 13 wll lopple. The tension In a bolt or cable Installed horlzontally through block 1, required to restore equillbrlum, is found to be $2013 \mathrm{kN} /$ meter of slope crest. Thls Is not a large number, demonstrating that support of the "keystone" Is remarkab Iy offective In Increasing the degree of stability. Conversely, r cmoving or weakening the keystone of a slope near fal lure as a result of toppling can have serlous consequences. The support force required to stabllize a slope from which the first n toe blocks have been removed can be calculated from equations (115) and (116), substitutling $\rho_{n+\rho}$ for ρ_{ρ}.

Now that the distributlon of \mathbf{P} forces has been defined in the toppling reglon, the forces R_{n} and S_{n} on the base of the columns can be calculated using equations (110) and (111); and assuming $\varphi_{n-1}=P_{n-1}$. Tand, R_{n} and S_{n} can also be calculated for the sllding reglon. Figure 10.9 shows the distribution of these forces throughout the slope. The conditions defined by $R_{n}>0$ and $I_{n} /<R_{n}$. Tan are satlsfled everywhere.

The limitations of preshearing are that it is difficult to determine results until primary excavation is complete to the finished wall. Since pre-shearing is done before primary blasts are made, it is not possible to take advantage of the knowledge of local rock conditions that is gained in the primary blasts. Also, the hole spacings in cushion blasting can usually be greater than in pre-shearing, thus reducing drilling costs.

Buffer Blasting

The following description of buffer blasting is taken verbatim from the Pit Slope Manual(272).

Buffer blasting, possibly the most simple method of control blasting involves a modification to the last row of the main blast pattern. Modifications are limited to reduced burden, spacings, and explosive loads.

The aim is to limit the load of ground shock from the blast. The method is usually employed in conjuntion with some other control blasting technique, such as preshearing, and its results are quite economical. Buffer blasting can only be used by itself when the ground is fairly competent. It may produce minor crest fracturing or backbreak. However, the amount of damage is still less than that which would be produced by the main production blast if no control blasting was used at all.

Buffer blasting is the cheapest form of control blasting. The powder factor is essential ly the same as for product ion blasting so explosives costs are the same. Drilling costs in buffer blasting are slightly higher because of the reduced burden and spacing which is used. Coupled charges produce high borehole pressures (usuallygreater than 300,000 psi) but breaking of the rock is desirable for buffer blasting.

CONTROLLED BLASTING: CONSTRUCTION PRACTICES AND ECONOMICS

Controlled blasting has been used on a wide range of construction projects and this experience has been used to draw some conclusions on the type of construction problems that may be encountered, and the cost savings that may be ach ieved(273, 274 , 275). The following is a summary of these conclusions.

1) Typical blasting problems, their probable causes and solutions are listed on Table IX.
2) Borehole pressure, and hence backbreak, can be reduced by decoupling or decking charges. Charges are decoupled when they do not touch the borehole wal lisee margin sketch). The ratio of the charge radius to the hole radius is a measure of the decoupling of the charge.
3) The comments earlier in this chapter relating to the correct burden dimensions and delay sequencing for the main blast, are equally applicable to control led blasting.
4) Doubling the hole diameter doubles the rupture radius (assuming that the coupling ratio, D explos/D hole, is kept constant). Hence, small diameter drill holes will create less damage to final wal ls than larger holes.

TABLE IX

SOLUTIONSTOCONTROLLEDBLASTING PROBLEMS

(after Plt Slope Manual (Chap. 1), 1976)

Problem	Probable Cause	Solutions
backbreak throughout wall (no boreholes showling)	a) buffer row overloaded or too close b) control blast may be overI oaded	a) move buffer row further from excavation I ImIt, reduce borehole pressure of buffer charge, use 15 msec. delay between buffer charges (If not already beling done)
		b) Increase hole spaclng or decrease powder load (by decouplling or decking) of cushlon or presplit holes
backbreak aound boreholes	borehole pressure greater than In sltu dynamic compressive rock strength	decouple or deck charges
backbreak between boreholes	buffer holes too close	Increase spacling, decouple or deck charges
Jolnting Interfers between blast holes	a) spacing too great b) burden Insufficlent c) delays between perimeter holes too large	a) reduce spacing and powder load b) make burden larger than spac Ing c) detonate holes on perlmeter row simultaneously
Very poor fragmentat Ion at excavation llmit, or blast fal Is to break to prespl It IIne	buffer row too far from excavation limit	decrease the distance from buffer row to presplit or llne drl lled holes
crest fracture	stemming Insufflclent or rock exceptlonally weak (e.g. weathered) at crest	Increase the helght of collar, el Iminate subgrade In drl I I holes over lylng the crest of a berm, use spacers In the upper port lon of the exp los Ive column, drll I smal I dlameter gulde holes.

Pattern when excavation is outside of Pre-shear planes.

Figure 11.14: Pre-shearing non-linear faces.

Al I loaded pre-shear holes should be stemmed completely around and between charges to prevent gas venting if weak strata are present. However, like cushion blasting, in more solid homogeneous formations it is preferable to have decoupled charges and to only place stemming in the top 2 or 3 ft . of the hole. Also, llke cushion blasting, it is desirable to increase the charge in the first few feet of hole to about two or three times that used in the upper portion. Th Is promotes shearlng at the bottom where it is more difficult to break the rock.

Pte-shearing loads are placed and detonated in the same manner as described for cushlon blasting. The staggering of charges in adjacent holes is also recommended for pre-shearing to give better overall load distribution.

The depth that can be pre-sheared at one time is agaln dependent upon the abi I ity to maintain good hole alignment. Deviation greater than 6 inches trom the desired plane of shear will give inferlor results. Generally, 50 ft . is the maximum depth that can be used for 2 to $3-1 / 2$ inch diameter holes without significant deviation of alignment.

Theoretically, the length of a pre-shear shot is unl Imited. In practice, however, shooting far in advance of primary excavation can be troublesome if the rock characteristics change and the load causes excessive shatter in the weaker areas. By carrying the pre-shear only one-half shot in advance of the primary blasting (see Figure 11.121, the knowledge gained from the primary blasts regarding the rock can be applied to subsequent pre-shear shots. In other words, the loads can be modified it necessary, and less risk is Involved as compared to shooting the full length of the neat excavation line before progressing with the primary blasts.

Pre-shearing can be accomplished during the primary blast by delaying the primary holes so that the pre-shear holes wi II fire ahead of then (see Figure 11.13).

In many cases, especially when shooting non-linear cuts, preshearing in combination with line drilling will give good results. For example, when it is desirable to maintain a corner of solid rock, line drilling the corner may be used to prevent breakage across It (see Figure 11.14). Guide holes to promote shear along the deslred plane are as advantageous in preshearling as they are In cushion blasting.

When preshearing in unconsolldated formations and line drilling between the normally spaced holes, the line orllled holes may vary in depth from the top few feet to the full depth of the pre-shear holes. Backbreak is more likely at the top ot a bench or I ift; consequent $1 \mathrm{y}, \mathrm{I}$ ine dr i I II ng between pre-shear holes for the top few feet reduces the chance of over-break In al I types of formations. In very unconsolidated material, the exploslve loads/ft. in the upper portion of the hole should be reduced by 50 percent to minimize overbreak at the crest ot the finished wall.

The main advantage of pre-shearing is that it is not necessary to return to blast the remaining portion of the cut after primary excavation.

-Excavated Area
Figure 11.12: Recommended drilling pattern for pro-shearing.

The theory of pre-shearing Is that when two charges are shot simultaneously in adjoining holes, collision of the shock waves between holes places the web in tension and causes cracking that gives a sheared zone between the holes. With proper spacing and charge, the fractured zone between the holes wi I I be a narrow sheared area to which the subsequent primary blasts can break. This results In a smooth wall with little or no overbreak.

The pre-sheared pl ane ref lects some of the shock waves from the primary blasts that follow preventing them from being transmitted into the finished wall, minimizing shattering and overbreak. However, the pre-sheared plane does not reduce vibrations from the primary blast in the surrounding rock.

Description

Preshear holes are loaded similarly to cushion blast holes; that is, either heavy core load detonating cord or string loads of full or partial cartridges of 1 to $1-1 / 2$ inch diameter by 8 inches long, spaced at 1 to 2 ft . centers.

Like cushion blasting, holes are usually fired simultaneously using a detonating cord trunkline. If excessively long lines are shot, portions can be delayed with MS Delays.

In extremely unconsolidated rock, results are improved by using guide or relief holes between loaded holes to promote shear along the desired plane. Even in harder formations, guide holes between loaded holes give better results than increasing the explosive charge per hole.

The average spacings and charges per foot of hole are given in Table VI II. These loads are for normal rock conditions and can be obtained using partial or whole conventional cartrldges of dynamite spaced on detonating cord downlines. In an extremely unconsolidated formation, poor results were obtained until the load was reduced to a column of 400 grain detonating cord In holes drilled on 12 inch centers. There is also a case on record where it was necessary to reduce the column load to 2 strands of 50 grain detonating cord in order to prevent excessive shatter Into a very unconsolidated finished wall. Therefore, the loads and spacings given in Table VIII can only be used as a guide.

TABLE VIII.
PRE-SHEAR BLASTING
Hole Diameter
Inches

| Spacing*
 $+\dagger$. |
| :---: | Explosive Charge**

$1-1 / 2$ to $1-3 / 4$
I-1/2
$0.08-0.25$ 2 to $2-1 / 2$
1-1/2 to 2
$0.08=0.25$ 3 to $3-1 / 2$
$1-1 / 2$ to 3
$0.13-0.50$
4
2 to 4
0.25-0.75

- Dependent upon formation being shot. Figures given are an average as provided by Du Pont of Canada (1964).
- * Ideally. dynamite cartridge diameter should be no longer than $1 / 2$ the diameter of the hole.

Where only the top of the formation is weathered, the guide holes need be dr i l l ed only to that depth and not to the full depth of the cushion holes. This procedure is common on the first lift or bench, since backbreak is more probable there than on lower benches.

Satisfactory results have been obtained in homogeneous formations by stemming only the top 2 or 3 ft . of the hole and not between charges. In this case, the air between the charges and the borehole wal 1 serves as the protective "cushion." When stemming is not used between charges, the gases formed by the explosion can find any weak zone in the formation and tend to vent before the desired shear between holes is obtained. Similarly, the gases may find areas of weakness back into the finished wall and produce overbreak. If the formation is weak, highly fractured, or contains faults, complete stemming between and around individual charges is recommended. Also, though not generally practiced in the field, staggering of discrete charges between holes as shown in Figure 11.11 improves powder distribution and gives better results.

Advantages and Limitations
Cushion blasting offers certain advantages including:

- Increased hole spacings to reduce drilling costs.
- Better results in unconsolidated formations.
- Possiblet o take tull advantage of geological information gained from shooting the main cuts when loading cushion holes -less guesswork.
- Results can be observed on first shot, which permits adjustment ot loads if necessary before proceeding.
- Better hole alignment with large diameter holes permits deeper holes.

There are situations where cushion blasting should not be considered. Among these are:

- Not practical for cutting 90 degree corners without also using Line Orllling or Pre-shearing.
- Sometimes overbreak from primary blasts completely or partially removes berm to be cushion blasted, thus requiring several load adjustments for different holes.

PRE-SHEAR BLAST I NG

Basic Principles

Pre-shearing, sometimes referred toss pre-splitting, involves a single row of holes drilled along the neat excavation line. The holes are usually the same diameter (2 to4 inches) as the main blast holes, and in most cases a l lare loaded. Preshearing differs from line drilling and cushion blasting in that the holes are fired before any adjoining main excavation area is blasted.

Figure 11. $1:$ Staggered spacing of discrete charges for optimum powder distribution.
spacing must always be less than the width of the berm belng removed as indicated In Table VII.

TABLE VI'I
TYPICAL LOADS AND ROLE PATTERNS

Role Diameter	Spacing* - tt.	Burden* t+.	Explosive	Charge** lb/ft.
2-2 1/2	3	4	0.08	to 0.25
3-31/2	4	5	0.13	to 0.50
$4-41 / 2$	5	6	0.25	to 0.75
5-51/2	6	7	0.75	to 1.00
6-6 1/2	7	9	1.00	to 1.50

- Dependent upon formation being shot. Figures given are an average as by Du Pont of Canada (1964).
- * Ideally, dynamite cartridge diameter should be no larger than $1 / 2$ the diameter of the hole.

Cushion blasting can be practiced by benching or by predri I ling the cushion holes to ful I depth of the excavation. When benching is used, a minimum 1 ft . offset per bench Is usually left since it is impossible to position the drill flush to the wall of the upper bench.

The maximum depth that can be successfully cushion blasted depends on the accuracy of the hole alignment. With larger diameter holes better hole alignment can be maintained for greater depths. Deviations of more than 6 inches from the plane of the holes generally gives poor results. Holes90 ft. deep have been successfully cushion blasted. The penetration rates of the drill should also be considered when determining the depth to be cushion blasted. If, for example, the penetration beyond a given depth becomes excessively slow, It may be more economical to bench In order to keep penetration rates and drilling costs at acceptable levels.

When cushlon blasting around curved areas or corners, closer spacings are required than when blasting a straight section. Also, guide holes can be used to advantage when blasting nonlinear faces. On 90 degree corners, a combination of controlled blasting techniques wlll give better results than cushion blasting alone (see Figure 11.10).

In very unconsolidated sedimentary formations where it is difflcult to hold a smooth wall, unloaded guide holes between cushion holes are recommended. General ly, smal I diametor gulde holes are employed to reduce drilling costs.

Figure 11.9: Alternative charge placements for cushion blasting.

CUSHIONBLASTING

Basic Principles

Cushion Blasting, sometimes referred to as trimming, smooth wall or slashing, is similar to line drilling in that it involves a single row of holes along the neat excavation I ine. Although cushion blasting as orlainally practiced involved holes of 4 to 6-1/2 Inches diameter, this'technlque is also used with smaller diameter holes of 2 to $3-1 / 2$ inches. Cushion blast holes are loaded with light, well-distributed charges and fired after the main excavation is removed. The stemming or air-gap "cushions" the shock from the finished wall as the berm Is blasted thus minimizing fracturing and stressing of the finished wall. By firing the cushion holes with minimum delay between holes, the detonation tends to shear the rock web between holes giving a smooth wall with minimum overbreak. Obviously, the larger the hole diameter the more "cushioning" effect realized.

Description

In cushion blasting, the main cut area is removed, leaving a minimum buffer or berm zone in front of the neat excavation line. The cushion holes can be drilled prior to the primary blasting in that area.

The burden and spacing will vary with the hole diameter being used. Table VII provides a guide for patterns and loads for different hole diameters. Note that the numbers shown are an average range because of variations experienced with the type of formation being shot.

Alternative blasting agents for cushion blasting include heavy core load detonating cord extended the full hole depth or dynamite cortridges (full or partial) spaced along a detonating cord downline (see Figure 11.9). To promote shear ing at the bottom of the hole, a bottom charge 2 to 3 times that used In the upper portion of the hole is generally employed. For maximum "cushioning," the charges should be decoupled; that is an oi r-gap shou ld be present between the charge and the wall of the blasthole. If cartridges are used, they can be taped to the detonating cord at a spacing of 1 to 2 ft . The top 2 or 3 ft . of the hole Is completely stemmed and not loaded. The length of top staming required varies with the formation being shot.

Minimum delay between cushion holes gives best shearing action from hole to hole; therefore, detonating core trunk|ines are normally employed. Where noise and vibration control are critical, good results can be obtained with millisecond (MS) delay caps.

The burden-t-spacing relationship will vary with different formations but, to obtain maximum shearing between holes, the

[^4]the normal burden. A common practice is to reduce the spac ings of the adjacent blast holes the same amount with a 50 percent reduction in explosive load. The explosives should be well distributed in the hole using decks and Primacord downlines.

Best results with I ine orllling are obtained in homogeneous formations where bedding planes, joints and seams are at a minimum. These irregularitles are natural planes of weakness that tend to promote shear through the I ine dr i I led hoi es into the finished wail. Therefore, th I n-bedded sedimentary and more unconsoildaed metamorphic formations are not well suited to line drilling for overbreak control unless dri ii Ing can be done perpendlcular to the strike of the formation. This, however, is not practical in most excavation work.

Figure 11 . 8 shows a typical pattern and procedure for line drliiing In open work. Best results are obtained when the primary excavation is removed to within 1 to 3 rows of the neat excavation line. The last two rows of holes are then si ebbed away from the line drll I holes using delay caps or "Primacord" connectors. This procedure glves maximum relief In front of the finished wall, al low Ing the rock to move forward thus creating less back pressures which could cause overbreak beyond the Ilne drllling. As indicated in Figure 11.8, reduced spacing and burden are used on the row next to the excavation I ine.

In thin-bedded sedimentary and unconsolidated metamorphic formations, results with line drilling can usually be improved by I Ight loading some of the line dri li holes. This procedure led to the development of Cushion Blasting. Also, it was found that line drilling results could be improved in some formations by I ight loading and firing the line dri II holes in advance of the primary blast, and this led to the introduction of the technique known as Pre-Shearing or Pre-Splitting. These modifications of line dril ling al I promoted additional weakness along the neat excavation I ine by using explosive force to shear the rock between the holes.

Advantages and Llmitations

Llne drliiing is applicable in areas where even the light explosive loads associated with other controlled blasting techniques may cause damage beyond the excavation limit.

When used with other controlled blasting techniques, line drilI ing between the loaded holes promotes shearing to improve resuits.

There are a number of limitations of llne drilling which must be recognized:

- Line drilling Is rather unpredictable except in the most homgeneous formations.
- Due to the close spacings required, dri II ing costs are high.
- Because line drll ling requires a large number of holes on rather close spacings, dri I I ing becomes tedlous and results are often unsatisfactory due to poor hole alignment.

Slopes excavated after pre-splitting the final faces on a site for a hydro-electric project in Austria. Photograph reproduced with permission of Atlas Copco. Sweden.

e) Delays should be used to control the maximum Instantaneous charge to ensure that rock breakage does not occur In the rock mass which is supposed to remaln Intact (see Flgure 11.16).
f) Back row holes should be drilled at an optlmum distance from the final digline to permit free digging and yet minlmize damage to the wall. Experlence can be used to adjust the back row positions and charges to achieve this result.

Controlled Blasting

On permanent slopes where even smal I slope fallures are not acceptable, the use of controlled blasting methods Is often economlcally Justlfled. The principle behind all these methods is that closely spaced holes are loaded with a relatively light charge so that thls charge ls well distributed on the final face. The detonation of these holes, often on a single delay, tends to shear the rock between the holes whle dolng $11+t$ le damage to the suroundlng rock. The following is a discussion on varlous methods of controlled blasting, and thelr advantages and di sadvantages, which Is taken from a publication by du Pont(273). Examples of controlled blasting are shown In Figure 11.7.

A general comment on the design of control led blasts Is that It Is often necessary to carry out a number of trlal blasts at the start of a project to determine the optimum hole layout and explosive charge. This requires flexlbllity on the part of the contractor and the speciflcatlons. It is also advisable to have the program under the direct lon of an engineer exper lenced In control led blasting.

Line Drllling
LIne Drlillng requires a slngle row of closely spaced, unloaded, small-diameter holes along the neat excovation Ilne. Thls provides a plane of weakness to which the prlmary blast can break. It also causes some of the shock waves created by the b I ast to be ref lected wh lch reduces shatter 1 ng and stresslng of the finlshed wall.

Description

LIne drill holes are generally 2 to 3 Inches In diameter and are spaced from 2 to 4 times the hole diameter apart along the excavation line. Holes larger than 3 Inches are seldom used In line drilling since the higher drllilng costs cannot be offset by Increased spacings.

The depth of line drl II holes Is dependent upon how accurately the allgnment of the holes can be malntalned. For good results, the holes must be on the same plane; any wander or drlft by attempting to drill too deep will have an adverse effect on results. For holes of 2 to 3 Inches diameter, depths greater than 30 ft . are seldom satisfactory.

The blast holes directly odjacent to the IIne dril I holes are generally loaded lighter and are more closely spaced than the other holes. The distance between the IIne drl II holes and the directly adjacent blast holes ls usually 50 to 75 percent of

Similar test sequences could be carried for each of the other factors which are relevant In a particular sltuatlon.
a) Ratlonallzation - Document present powder factors on an equivalent energy basis using the weight of the explosive In current use. Weight strength data should be obtalned from the explosives manufacturer If these are not already avallable.
b) Evaluation - For a blast with the explosive currently in use, document the behavior of the blast during initlation and the condltion of the resulting muck plle.
c) Document rate and cond ltions of digging.
d) Document fragmentat ion based upon the rat lo of oversl zed materlal requirlng secondary blasting to the total blast tonnage.
e) Document drilling and blasting costs.
f) Experlmentation = Select a similar area of ground and carry out a blast with a higher powder factor which is obtalned by using a hlgher energy explosive.
g) Evaluatlon - Document the results as for steps (b) to (e).
h) Carry out a cost-benefit study.

Repeat the experiment to determine its valldity.

I I CONTROLLED BLASTING TO IMPROVE STABILITY

Based upon the assumption that the damage caused by a blast Increases In proportion to the weight of explosive used, It follows that any reduction In explosive consumption will lead to a reduction In damage to the rock. Slope instabllity is often related to blast damage to the rock which can be minimized by optimization of the production blast as well as using controlled blasting methods such as line drilling, buffer, pre-split, and cushlon blasting.

The following condltions should be satisfied if the production blast is to be optimized and damage to the rock behind the face minimized.
a) Choke blasting Into excessive burden or broken muck plles should be avolded.
b) The front row charge shou I d be adequately des 1 gned to move the front row burden.
c) The main charge and blasthole pattern should be optlmlzed to give the best possible fragnentation and digging conditions for the minimum powder factor.
d) Adequate delays shou ld be used to ensure good movement towards free faces and the creation of new free faces for following rows.

Figure 11.6 : Features of a satisfactory production blast.

Evaluation of a blast

Once the dust has settled and the fumes have dispersed after a blast, an inspection of the area should be carried out. The main features of a satisfactory blast are illustrated in Figure 11.6.

The front row should have moved out evenly but not too far. Excessive throw is unnecessary and very expensive to clean up. The heights of most benches are designed for efficient loader operation; low muck piles, due to excessive front row movement, represent low loader productivity.

The main charge should have lifted evenly and cratering should, at worst, be an occasional occurrence. Flat or wrinkled areas are indicative of misfires or poor delaying.

The back of the blast should be characterized by a drop, indicating a good forward movement of the free face. Tension cracks should be visible in front of the final diglines. Excessive cracking behind the final digline represents damage to the slopes and wastage of powder.

The quality of a blast has a significant effect on components of the rock excavation cost such as secondary drilling and blasting of oversize boulders, digging rate, the condition of the haul roads, and loader and truck maintenance. Therefore, careful evaluation of the blast to determine how improvements could be made to the design are usually worthwhile.

Oversized fragments, hard toes, tight areas and low muck p i les (caused by excessive throw) have the most significant detrimental effect on the digging rate and digging conditions. A study of loader performance and of complaints from loader operators helps to maintain an awareness of these problems among blasting personnel. An attempt should be made to measure d igging rate by noting the time required to fill trucks or by comparing average daily production rates. Similarly, loader wear and tear should be noted since this may reflect difficult digging conditions.

Poor fragmentation of the toe due to an excessive toe burden can lead to poor digging and uneven haul road condition. Uneven haul roads lead to suspension wear on the trucks and also spillage which can give rise to high tire wear. An attempt to correct this problem by additional subdrilling rather than by correcting the front row charge can lead to excessive sub-break which can give rise to blast hole instability and also to poor bench crest conditions if a deeper bench is to be removed.

Modification of Blasting Methods

When it is evident that unsatisfactory results are being obtained from a particular blasting method and that the method should be modified, the engineer may have to embark on a series of trials in order to arrive at an optimum design. As with any trials, careful documentation of each blast is essential and, whenever possible, only one variable at a time should be changed. The following sequence of test work is an illustration of the type of experiment which would be carried out to evaluate the cost effectiveness of using a higher energy explosive.

Figure 11.4 : Correlation between in situ seismic velocity and required powder factor. After Broadbent ${ }^{271}$.

Figure 1 I. 5: Relationship between boulder size L, specific charge q and burden B in bench blasting.
grounds to support this suggestion and the optlmum blasting direction is usually established by carefully controlled trlals.

The importance of blasting to a free face has already been stressed and it Is equally important to plan the blast so that suitable free faces are created for the next blast. When free faces are not available, e.g. when the face changes d Irection, there Is a danger that the blast may become choked and It may be necessary to use delays in order to work In such a sltuatlon. A typlcal firing sequence for a choked blast situation Is Illustrated In Figure 11.3 (iv).

The use of de I ays In a blast Is one of the most power f u I weapons in the fight against excessive blast damage and slope instabllity. Thls subject will be discussed more fully In a later section of this chapter.

Blast Design

NIne factors which influence the effectlveness of a blast have been discussed on the preceding pages. In order to deslgna blast it Is necessary to select values for al 1 these parameters and determine the optimum explosive load. Usually the hole diameter is decided by the size of aval lable drllis and the bench helght by the dimensions of the cut. The bench height should not exceed 20 to 30 ft . since it becomes difficult to control hole devlation at depths greater than this. The bench helght should not exceed the vertical reach of the load Ing equipment by more than about 5 ft . This gives the operator protection from sudden coll apses of the face.

The basic parameter for measuring explosive charge is the "powder factor" which is the weight of explosive required to break a unlt volume of rock, e.g. $\mathrm{Ib} / \mathrm{yd} .{ }^{3}$ or $\mathrm{kg} / \mathrm{m}^{3}$. It Is also necessary to relate the powder factor to the type of explos I ve used because the amount of energy for a g ! ven wel ght of exp los Ive varles with the explosive type (see Table VI). The selection of an appropriate powder factor and dr 11 I hole pattern, because these two factors are directly related, is usually based on the blasters' experience. However, thls exper lence has been used to draw up some guidelines to determine powder factors. For example, Broadbent relates the powder factor to the sel smlc veloclty of the rock (Figure 11.4) and this may be useful Information in hlghway construction when selsmic studies have been carried out to determine overburden thickness.

An alternative approach is to use theoretical equations which have been developed, and extenslvely tested In the fleld, by Langefors and Kihlstrom(257) and others. These equatlons take Into account all parameters governing blast design and could serve as a starting polnt In blast design.

Blast design charts are Included In Chapter 2 of Langefors and Klhistrom's book. One of these design charts is shown In Flgure 11.5 which relates the powder factor (q) to the burden and the boulder size (sleve slie through which 95 percent of the blast will pass). The unbroken I ines represents the powder factor to just loosen the rock. This chart may be useful In designing a blast to produce rock of a certain slze for rlprap, for example. Other equations, using a different approach have been developed by Bauer(272).

Figure 11.3: Typical firing sequences.
locating a smsl I "pocket" charge centrally within the stemmlng(269).

(8) InItlation Sequence for Detonation of Explosives

Having drlled and charged a blast It Is then necessary to tleup the pattern. This Involves laying out detonating cord along the "rows" to form trunk I Ines which are then + led to the downIlne of each charge. The rows are normally parallel to the free face but, as shown in the margin sketch on page 11.6, may be Inclined to It. Safety lines are used In large patterns to ensure complete detonation and reduce the rlsk of cut-offs. A perlmeter or "ring" I ine ls then tled around the pattern to provlde a further safeguard.

The firing or inltiating line wlli normally be connected to the midde of the front row trunk line. Other firing sequences are Illustrated in Figure 11.5. The blasting sequence, after the inltlation of the first row, Is controlled by the use of delays as dlscussed In the next section.
(9) Delays Between Successive Hole or Row Firing

A typical blast for a highway cut may contain as many as 100 blast holes which In total contain several thousand pounds of explosives. Simultaneous detonation of this quantity of explosive would not only produce very poorly fragmented rock, but would also damage the rock in the walls of the excavation and create large vibrations in any nearby structures. In order to overcome this situation, the blast ls broken down into a number of sequential detonations by means of delays.

Recent research(270) has shown that there can be considerable error In the timing of delays. Thls can produce incorrect sequencing of blast holes and poor blasting results. If thls problem is suspected the performance of the detonator shou ld be checked with the manufacturer.

When the front row Is detonated and moves away from the rock mass to create a new free face, It is important that tlme should be allowed for thls new face to be establ lshed before the next row Is detonated. Typically, delay intervals of 1 to 2 mill Iseconds per ft. of burden are used. A typical blast with a burden of 10 ft . would have about 15 msec . delays between rows.

Normal row by row delaylng is the slmplest and general ly the most satisfactory firling sequence. Delay patterns can become quite complex and should be planned and checked carefully. The number of rows should not exceed 4 to 6 as choking occurs with deeper blasts and vertical craters may be formed above the back rows which do not have sufflclent room to move laterally.

An alternative Is to use an echelon delaying and to initiate the firing sequence with a vee cut to create the first free face. This type of firing sequence can be useful when blasting In strongly jointed rock where near vertical joints strike across the bench at an angle to the face. Some blasting engineers suggest that the row line should bisect the angle between the strike of the jolnts and the face or the strike of two joint sets. There does not appear to be very strong theoret ical

Rock breakage at the bottom of a blasthole
should exercise caution in applying this pattern since Its success depends upon rock of good quality. Joints running across a line of holes \ln a row could al low explosive gases to vent and reduce the effectiveness of the blast.

(5) Subdrlll Depth

Subdrl II Ing or drl II Ing to a depth below the required grade, Is necessary in order to break the rock on the floor of the cut. Poor fragmentation at this level wlll form a serles of hard "toes" which can lead to expensive loader operation due to ditflicult digging conditlons and breakdowns. Excessive tragmentat ion probably means that the rock behind the face and below the grade Is damaged and thls means a reduction In stability.

As II lustrated In the margin sketch, breakage of the rock usually projects from the base of the bottom load In the form of an Inverted cone with sides Incl lined at 15 degrees to 25 degrees to the horizontal, depending upon the strength and structure of the rock. In multi-row blasting, the breakage cones interact and link up to glve a reasonably even transition from broken to undamaged rock. Experience has shown that a subdrill depth of 0.2 to 0.3 times the distance between adjacent blast holes Is usually adequate to ensure effective digglng to grade. It is particularly important that subdrlli depths should not be exceeded In the front and back rows otherwl se unstable crest and toe conditions can be created in the new bench. In fact, there is good justification for reducing or even ellminating subdrllling in the front and back rows If bench stabllity ls critical.
(6) Blast Hole Inclination

As pointed out in the discussion on burden, the front row burden varles with depth If vertical blast holes are used and the bench faces are inclined. Incllned blast holes are obviously advantageous for the front row and, by dr I I I Ing the blast holes parallel to the bench face, a constant front row burden Is achieved. In order to maintain a constant burden with depth for the remainder of the blast, It follows that al I the blast holes should be Inclined. Some blasting englneers would argue that the use of blast holes drilled at between 10 degrees and 30 degrees to the vertical will give better fragmentation(268), greater displacement and reduced back-break probloms(269).

(7) Stemming

The use of stemming consisting of drl I I cuttings Is a generally accepted procedure for directing exploslve effort Into the rock mass. The same arguments as were used in the discussion on burden apply in the case of stenming. Too $1 i^{t+t}$ le stemming will al low the explosion gases to vent and will generate flyrock and alr blast problems as well as reducing the effectlveness of the blast. Too much sterming will glve poor fragmentation of the rock above the top load.

The optimum stemming length depends upon the propertles of the rock and can vary between 0.67 and 2 times the burden. If unacceptably large blocks are obtained from the top of the bench, even when the minimum stemning column conslstent with flyrock and airblast problems Is used, fr agnentat lon can be Improved by

d) Use of easer holes (E) to move front row burden.

Figure 11.2 : Various blasthole patterns used in open pit production blasting.

Effective burden and spacing for a square blasting pattern

Effective burden and spacing for an en echeion biasting pattern

Average front row burden $=$
$X+\frac{1}{2} T=X+\frac{t}{2}$. Coto

Too small a burden will allow the radial cracks to extend to the free face end this wlll give rlse to venting of the explosion gases with a consequent loss of efficiency and the generation of tlyrock and air blast problems. Too large a burden will choke the blast and will give rise to very poor fragmentation and a general loss of efficiency. Experlence has shown that the explosive charge is most efficient when the burden is equal to approximately 40 times the hole diameter.

The ef fectlve burden B_{l} and the ef fective spacing S_{l} depend not only upon the blast hole pattern but al so upon the sequence of firing. As lllustrated in the margin sketch, a square blast hole pattern which is fired row by row' from the face glves an effective burden equal to the spacing between successive rows parallel to the face. On the other hand, an Identical pattern of blast holes can be fired en echelon resulting In completely different burdens and spacings as shown In the margin sketch.

One of the most Important questlons to be consldered in designIng a blast Is the choice of the front row burden. If vertical blast holes are used and the bench face is inclined as a result of the digging angle of the loader in clearing the previous blast, the front row burden wil I not be constant but will vary with depth as Illustrated In the margin sketch. Al lowance can be made for this variation by using a higher energy bottom load In the front row of holes. Alternatively, the blast hole can be inclined to glve a more unlform burden as wII be dlscussed later in ths section. When the free face Is uneven, the use of easer holes to reduce the burden to accoptable limits is advisable (see Flgure 11.2d).

Since the effectiveness of the tragmentation process depends upon the creation of a free face from which a tenslle strain wave can be generated and to which the burden rock can move, the design of the front row blast is critical. Once thls row has been detonated and effectively broken, a new free face is created for the next row and so on untl lhe last row is flred.

(4) Effectlve Spacing

When cracks are opened parallel to the free face as a result of the reflected tensile strain wave, gas pressure enter Ing these cracks exerts on outward force which fragments the rock and heaves It onto the muck pile. Obviously, the lateral extent to which th Is gas can penetrate Is Ilmited by the size of the crack and the volume of gas avallable and a stage wlli be reached when the force generated Is no longer large enough to fragment and move the rock. If the effect of a single blast hole ls relnforced by holes on either side at an effective spacing S_{e}, the total force act Ing on the str I p of burden material will be evened out and uniform tragmentation of this rock wll result.

Experience suggests that an effective spacing of 1.25 times the effectlive burden gives good results. However, work by Lundborg of Nitro Nobel in Sweden, mentioned In the paper by Persson(267) shows that Improved fragmentation may be obtalned by Increasing the spacing to burden ratio to as much as 4, 6 or even 8. Thls finding has been Incorporated Into the "Swedish" blast hole pattern II lustrated In FIgure II.2c. The reader

Exolosive	Grade	TABLE VI'			Specitic Gravity	Water Resistance
		PROPERTIES OF EXPLOSIVES'				
			Strength'	velocity of Detonation ($\$+/$ sec)		
Atlas Power Primer	--		75\%	17,000 - 18,000	1.36	Excel lent
Atlas Powerdyn	--		529C	10,000 $=14,000$	1.29	Falr
Atlas Gelodyn	No. 1		528c	10,000 - 14,000	1.29	Fair
	No. 5		35\% c	10,000 - 12,000	1.03	Fsir
Hercules Hercomix	--		65\%w	10,700-15,750	0.80-0.95	Very Poor
Hercules Gelamlte	1, 1-x		67\%	11,500	1.3	Good
	5, 5-x		62\%w	10,000	0.95	Falr
	D		70\%w	15,000	1.4	Vary Good
Dupont ${ }^{3}$ Dynamile	A		70\%	10,700	1.21	Falr
	B		408	11,000	1.55	Good
	B		752	15,700	1.40	Good
Dupont Tovex	2000	SD-A	A --	14,800	1.15	Fair
	5000	SD	--	14,200-14,700	1.15	Fair
C.I.L. Forclte	--		40\%	to. 200	1.49	Good
	-		80\%	17,700	1.30	Good

Notes:

1. Informatlon on selected explosives obtained trom manufacturer's product information.
2. $\mathbf{c}=$ cartridge strength; $w=$ welght strength as indicated by menutacturer.
3. Dupont products now supplied by Explosives Technologies International Inc.
dynamites are rated according to the percentage by weight of nitroglycerin they contain. However, the relative strengths are not proportional to the relative amounts of nitroglycerin because this is not the only energy-producing ingredient in the formulation. For example, 60 percent dynamite is not twice as strong as 30 percent dynamite.

One measure of the strength of an explosive is its velocity of detonation; the higher the velocity the greater the shattering effect. However, the strength, density and degree of confinement are also factors that should be considered in selecting an explosive for a specific purpose. Table VI lists the velocity of detonation, specific gravity and water resistance of some common Dupont(261) and C.I.L. explosives(263).

Explosive strength is also deflned by weight and bulk strengths. Weight strengths are useful when comparing blast designs In which explosives of different strengths are used, and also when canparing the cost of explosives because explosives are sold by weight. The bulk (or volume) strength is related to the weight strength by the specific gravity, and this figure is Important in calculating the volume of blast hole required to contain a given amount of explosive energy. A higher bulk strength requires less blast hole capacity to contain a required charge.

The sensitivity of an explosive is a characteristic which determines the method by which a charge is detonated, the minimun diameter of the charge and the safety with which the explosive can be handled. Highly sensitive explosives will detonate when used In smaller diameter charges and as the sensitivity of the explosive is decreased, the diameter of the charge must be increased.

(2) Blast Hole Diameter

Blast hole diameter on highway construction work ranges from about $1-1 / 2$ inches for hand held-drills to $2-1 / 2$ inches and 4 I nches for "a ir-trac" and wagon dri I ls. Al I these dri I Is are rotary percussive and are powered with compressed air.

Persson(267) shows that the cost of dri I I ing and blasting decreases as the hole size increases. This is because the hole volune per foot of hole increases with the square of hole size so that the same volune of explosive can be loaded into fewer holes. This cost saving is offset by the greater shattering of the rock that is produced by the more highly concentrated explosive which can result in less stable slopes.

(3) Effective Burden

In order to understand the inf I uence of the effective burden (the distance between the row of holes under consideration and the nearest free face) It is necessary to understand the mechanism of rock fracture described earlier in the chapter.

The blast Is most efficient when the shock wave is reflected in tension from a free face so that the rock is broken and displaced to form a well-fragmented muck pi le. This efficiency depends to a large extent on having the correct burden.

Figure 11.1: Definition of bench blasting terms.

Mechani sm of rock fracture by explosive.

Effect of fragmentation on the cost of drilling. blasting. loading and hauling.

Within about one borehole radius, the pressure exerted by the shock wave is suff iclent to shatter the rock and form a crushed zone around the hole. As the wave moves outwards, the tangential stress becomes tensile. Because rock ls much weaker In tension that compression, the rock breaks to form a pattern of radial cracks around the hole. When the shock wave reaches a free face, the rock is able to expand and slabs of rock break from the face. The shock wave is also ref lected from the face In tension and this aids in rock breakage.

From thls description, It can be seen that explosives will break rock at distances of between 10 and 20 hole diamotors from the point of detonation. To prevent damage to rock behind the face, the zone of crushed rock and radial cracking around the holes in the flnal row is control led by reducing the explosive charge in the holes. As the shock wave travels beyond the Ilmit of rock breakage into the surrounding rock, it sets up vibratlons both within the rock and at the ground surface. Structures through which these vibration waves pass wil be subjected to a twisting and rocking motion which may be sufficlent to cause damage. Allowable levels of vibration for different structures, and methods of control ing vlbrat ions, are discussed later In this chapter.

Production Blasting

The basic economics of rock excavation using explosives is shown In the margin sketch which is taken from a paper by Harrles and Mercer(266). The production of a well-fragmented and loosely Decked muck plle that has not been scattered around the excavatlon area facilitates loading and hauling operatlons. Thls condition is at the minimum total cost point on the graph. However, close to the final face, drilling and blasting costs w I I increase because more closely spaced and carefully loaded holes will be required. In order to achieve the optimum results under both conditions, a thorough understanding of the following parameters is required:

1) Type, weight, distribution of explosive
2) Blast hole diameter
3) Effective burden
4) Effective spacing
5) Subdri I I depth
6) Blast hole Inclination
7) Steming
8) Inltlation sequence for detonation of explosives
9) Delays between successive hole or row firing.

Factors 2 to 7 are introduced in Figul 11.1 and are described in the foiiowlng sections.

Each of the factors listed doove will be considered in relation to its influence upon the effectiveness of the blast and its Influence upon the amount of damage inf I Icted upon the remalnIng rock.

(1) Type, Welght end Distribution of Explosive

The strength of an explosive is a measure of the work done by a certain weight or volume of explosive. This strength can be expressed In absolute units, or as a ratio relative to a standard explosive such as dynamite. Thus nitroglycerin or stralght

Introduction

The excavation of rock slopes usual ly involves blasting and it is appropriate that the subject receive attention in this manual on rock slope engineering. The fragmentation of rock by means of explosives is a major subject in its own right and the fundamentals have been dealt with in a number of excellent text books (257-260), while most of the practical aspects have been described in handbooks published by manufacturers of drilling equipment and explosives (261-264). The first part of this chapter reviews the principles of production blasting and discusses methods of evaluating the results.

Detailed design of blasting operations are usually the responsibility of the contractor, while the principle duty of the owner's representative is to ensure that the desired results are being produced. This requires that the owner understands blasting methods so that he can review alternative procedures and propose modifications if necessary. The owner should also ensure that accurate records are kept of each blast so that the results obtalned can be related to the method used. The records are also useful for cost control purposes.

Rock excavation for highway construction often requires the formation of a slope that will be stable for many years, and that will also be as steep as possible to minimize excavation volume and land use. While these two requirements are contradictory, the stability of slopes will be enhanced, and the maximum safe slope angle increased, by using a blasting method that does the least possible damage to the rock behind the final face. The second part of the chapter describes proven methods of minimizing blasting damage which are included in the general term "control led blasting". The techniques are described in sane detail because they may not be standard practice for the contractor and the design engineer is often involved with writing the specifications and supervising the work.

The third part of the chapter describes methods of control ling structural damage due to blast vibrations and minimizing hazards of flyrock, airblast and noise. A glossary of blasting and excavation terms is included in the Appendix 5.

I PRINCIPLES OF BLASTING

Mechanism of Rock Failure by Explosive
The mechanism by which rock is fractured by explosives is fundamental to the design of blasting patterns, whether for production or control led blasting. It also relates to the damage to surrounding structures and disturbance to people living in the vicinity. The following is a description of this mechanism(265).

When an explosive is detonated, it is converted in a few thousandths of a second from a solid into a high temperature gas. If the explosive is confined in a drill hole, this very rapid reaction causes the gas to exert pressure in the rock immediately around the hole. Th is pressure can exceed 100,000 atmospheres, and the energy is dissipated into the surrounding rock in the form of a shock wave that travels with a velocity of several thousand feet per second. It is the passage of this shock wave that breaks rock by the mechanisms shown in the margin sketch.

Chapter 10 references

245.	MULLER, L. New considerations of the Vajont slide. Felsmechanik und engenieurgeologie. Vol. 6. No. 1, 1968, pages 1-91.
246.	HOFMANN, H. Kinematische Hodellstudien zum Boschungsproblem in regelmassig geklüfteten Medien. VeryffentZichungen de8 Institutes fuir Bodermechanik und Felsmechanik. Kalsruhe, Hetf 54, 1972.
247.	ASHBY, J. Sliding and toppling modes of failure in models and jointed rock slopes. M.Sc Thesis. London University, Imperial College, 1971.
248.	SOTO, C. A comparative study of slope modelling techniques for fractured ground. M.Sc Thesis. London University, Imperial College, 1974.
249.	WHYTE, R.J. A study of progressive hanging wall caving at Chambishi copper mine in Zambia using the base friction model concept. M.Sc Thesis. London University, Imperial College, 1973.
250.	CUNDALL, P. A computer model for simulating progressive, large scale movements in blocky rock systems. Proc. IntnZ. Symposium on Rock Fracture. Nancy, France, 1971, Paper 11-8.
251	BURMAN, B.C. Some aspects of the mechanics of slope and discontinuous media. Ph.D Thesis. James Cook University of North Queensland, Australia, 1971.
252.	BYRNE, R.J. Physical and numerical models in rock and soil slope stability. Pk.D Thesis. James Cook University of North Queensland, Australia. 1974.
253.	HAMMETT, R.D. A study of the behaviour of discontinuous rock masses. Pk.D Thesis. James Cook University of North Queensland, Australia, 1974.
254.	DE FREITAS, M.H and WATTERS, R.J. Some field examples of toppling failure. Ceotechnique. Vol. 23. No. 4, 1973. pages $495-514$.
255.	WYLLIE, D.C. Toppling rock slope tallures, examples of analysis and stabllization. Rock Mechanics 13, 89-98 (1980).
256.	GOODMAN. R.E and BRAY, J.W. Toppling of rock slopes. Proc. Speciality Conference on Rock Engineering for Foundations and Slopes. Boulder, Colorado, ASCE, Vol. 2. 1976.

FACTOR OF SAFETY FOR LIMITING EQUILIBRIUM ANALYSIS OF TOPPLING FAILURES

The factor of safety for toppl Ing can be deflned by dividing the tangent of the friction angle belleved to apply to the rock layers (Tan oqailobla) by the tangent of the friction angle required for equilibrlum with a glven support force T (TanDraquirad)

$$
F=\frac{\operatorname{Tan} \phi_{\text {ovallable }}}{\operatorname{Tan} \phi_{\text {required }}}
$$

(119)

If, for example, the best estlmate of $\operatorname{Tan} \varnothing$ Is 0.800 for the rock surfaces sliding on one another, the factor of safety In the example, with Tan $\phi_{\text {required }}=0.7855$ and wlth a 0.5 kN support force In block 1, Is equal to $0.800 / 0.7855=1.02$. Wlth Tan $\varnothing_{\text {required }}=0.650$ and a support force of 2013 kN , the factor of safety is $0.800 / 0.650=1.23$.

Once a column overturns by a small amount, the frictlon requlred to prevent further rotat ion Increases. Hence, a slope just at Ilmiting equllibrlum Is meta-stable. However, rotation equal to $2(\boldsymbol{\beta}-\alpha) w||\mid$ convert the edge to face contacts along the sldes of the columns Into cont Inuous face contacts and the friction angle requlred to prevent further rotationwlildrop sharply, possibly even below that required for $\operatorname{Inl}|+|a|$ equilibr turn. The choice of factor of safety, therefore, depends on whether or not some deformation can be tolerated.

The restoration of contlnuous face-to-face contact of toppled columns of rock Is probably a very important arrest mechonism In large scale toppling fal lures. In many cases In the fleld, large surface displacements and tenslon crack formation can be observed and yet the volumes of rock wh lch detach themse lves. from the rock mass are relatlvely modest.

GENERAL COMMENTS ON TOPPLING FAILURE

The anal ysis presented on the preced Ing pages can be app I led to a few special cases of toppling fal lure and It Is obviously not a rock slope design tool at this stage of development. However, the basic princlples whlch have been Included In this analysis are generally true and, with sultable additions, wlll probably provide a basls for further developments of toppling tallure analysis.

The reader is strongly advised to work through the example glven for himself and to try examples of his own since this can be a very Instructive exercise. The calculatlons are relatively simple to program on a desk top calculator or a computer and the avallabllity of such a program wlllenable the user to explore a number of possibllitles, thereby galning a better understanding of the sensitivity of the toppl ing process to changes In geometry and materlal propertles.

CALCULATION OF FORCES FOR EXAHPLE SHOWN in figure 10.9											
n	y_{n}	$y_{n} / \Delta x$	M_{n}	L_{n}	${ }^{\text {n }}$.t	${ }^{\text {n n.s }}$	P_{n}	R_{n}	s_{n}	S_{n} / R_{n}	Mode
16	4.0	$\emptyset .4$			\emptyset	\emptyset	\emptyset	866	500	0.577	
15	10.0	1.0			0	\emptyset	\emptyset	2165	1250	0.577	STABLE
14	16.0	1.6			0	\emptyset	\emptyset	3463	2000	0.577	
13	22.0	2.2	17	22	0	\emptyset	\emptyset	4533.4	2457.5	0.542	
12	28.0	2.8	23	28	292.5	-2588.7	292.5	5643.3	2966.8	0.526	
11	34.0	3.4	29	34	825.7	-3003.2	825.7	6787.6	3520.0	0.519	T
10	40.0	4.0	35	35	1556.0	-3175.0	1556.0	7662.1	3729.3	0.487	\emptyset
9	36.0	3.6	36	31	2826.7	-3150.8	2826.7	6933.8	3404.6	0.491	p
8	. 32.0	3.2	32	27	3922.1	-1409.4	3922.1	6399.8	3327.3	0.520	P
7	28.0	2.8	28	23	4594.0	156.8	4594.8	5872.0	3257.8	0.555	L
6	24.0	2.4	24	19	4837.0	1300.1	4037.0	5352.9	3199.5	0.598	1
5	20.0	2.0	20	15	4637.5	2013.0	4637.5	4848.1	3159.4	0.652	N
4	16.0	1.6	16	11	3978.1	2284.1	3978. 1	4369.4	3152.5	0.722	G
3	12.0	1.2	12	7	2825.6	2095.4	2825.6	3707.3	2912.1	0.7855	
2	8.0	0.8	8	3	1103.1	1413.5	1413.5	2471.4	1941.3	0.7855	SLIDING
1	4.0	0.4	4	-	-1485.1	472.2	472.2	1237.1	971.8	0.7055	

Figure 10.9 : Limiting equilibrium of a toppling slopewith Tan申 = Ø. 7855.

The use of small diameter blast holes also means using smaller hole spacings. However, small holes are more subject to wander, or to caving In Incompetent ground.
5) The concentration of charge at the wal I should be as low as possible by using a closer hole spacing and loading density than for normal production blosting. Use of a larger number of smal ler charges decreases the radius of fracture around blast holes. Thls lessens the Ilkel lhood that large volumes of explosive gases from a slingle charge will be channel led into a jolnt or fracture, causing serious backbreak.
6) Accurate drilling is Important In control led blasting to ensure an even distribution of the charge on the face. Some applications require that holes be dril led at an angle corresponding to that of the final wall. Hence, some form of equipment which can drlll back under Itself (e.g., small dlameter percussive oril l) would probably be required.
7) Depth of subgrade dr I II Ing and stemming both affect crest tracturling. Crest fractur Ing can be caused directly by the natural tendency of an explosive column to crater or break out towards the free surf ace. The depth of stamming var les from 30 +imes the charge diameter for hard competent rock to 60 times the charge d lameter for soft Incompetent rock. Subgrade drilling may fracture the rock at the toe of the slope as well as the crest of an underlying bench, thereby, weakening it and making is susceptible to rock falls.
8) Specifications should always contain provision for experimentation to determine the correct combination of hole dlameter, burden and charge for each project and each change of rock type.

Because the design of the production blast has an effect on the performance of the control led blast, the fol lowing aspects of production blasting should be consldered.

1) Charge the upper half of the last few I Ines of production blast holes lighter than normal to prevent excessive damage beyond the preshear I Ine.
2) Besides offerIng safer working condltions, Inclined drilling of production blast holes leads to less backbreak near the collar of the hole and resistance of the rock to blasting appears to be reduced.
3) Reduce the shock transmitted to the back slope, by reduclng the delay perlod between the next to last and last rows of production holes by about 40 to 50 mllil seconds.
4) Reduce backbreak by having proportionally fewer production blast holes exposed to the final slope face. Thls can be achleved by adoptIng an elongated drll I Ing Rattern, l.e. the spacing of the blast holes is much greater than the burden.
5) Drill the last line of production blast holes about half the normal burden from the preshear line to ensure the production blast holes backbreak to the preshear.

The cost savings achieved by controlled blasting cannot be measured directly but it is generally accepted(275) that these savings are greater than the extra cost of drl I I Ing closely spaced, carefully aligned holes and loading then with special charges. The savings that are achleved are the result of being able to cut steeper slopes and reduce excavation vol ume. Thls in turn means that less land adjacent to the highway is disturbed. It is also found that less time is spent scaling loose rock from the face after the blast and the resulting face is more stable and requires less maintenance In the future. From an aesthetic point of view, steep cuts have a smal ler exposed area than flat slopes. However, some people may f Ind the trace of drill holes on the face to be objectlonable, even If the rock is less hlghly fractured than would be the case In conventional blasting.

IIIBLAST DAMAGE AND ITS CONTROL

Highway construction is often carr led out in populated areas and in these cases blasting operations must be control led to ensure that damage and disturbance is minlmited. Four types of damage caused by blasting are as follows(267):

1) Structural damage due to vlbrations induced in the rock mass.

21 Damage due to fly rock or boulders ejected from the blast area.
3) Damage due to air blast.
4) Damage due to nolse.

Further consideration Is that ground vlbrations are perceptible well outside the zone withln which the vlbrations may cause damage. This can cause people living In the area to complain about the vibratlon and possibly put in claims for damages not caused by vibrations. Thls problem can often be overcome by Informing people before blasting starts about the vibrations that they will feel. Wlthin the zone where damage may possibly occur, a survey should be carr led out to record al I ex Ist 1 ng cracks, with photographs where possible. The Office of Surface Mining(277) has drawn up a standardized system of recording structural damage that helps to accurately survey bulldings, an example of which is shown in FIgure 11.15. Finally, vibrations should be measured, at least durling the initlal blasts, to ensure that vibration levels are within al lowablellmits and to determine the maximum explosive weights that can be detonated per delay. If these precautlons are followed, It is unlikely that a successful claim for blast damage will be made.

The fol lowing Is a discussion on the types of damage and what steps can be taken in designing the blast to prevent damage from occurring. A complete review of blast damage mechanlsms is beyond the scope of this manua 1 and the interested reader 1s referred to the excellent ilterature on the subject(257, 258, 260, 276-289).

(a) Wallidentification procedure.

(b) Multi-wall identification procedure.

(c) Field wall identification procedure.

Figure 11. 15: Example of Office of Surface Mining method of making damage surveys.

Structural Damage

The fragmentation of rock by detonation of an explosive charge depends upon the effects of both strain induced in the rock and upon the gas pressure generated by the burning of the explosive. Structural damage resulting from vibration is dependent upon the strains Induced in the rock.

When an explosive charge is detonated near a free surface, two body waves and one surface wave are generated as a result of the elastic response of the rock. The faster of the two waves propagated within the rock is called the primary or P'wave, while the slower type is known as the secondary or S wave. The surface wave, which Is slower than elther the P'or S wave, is named after Rayleigh who proved its existence and is known as the R wave. Ladegaard-Pedersen and Dally(276) suggest that, in terms of vibration damage, the R wave is the most important since it propagates along the surface of the earth and because its amplitude decays more slowly with distance travelled than the P'or S waves. While this may be true for damage to surface structures, rock remalning In the final slopes is also of concern and hence the effects of all three waves should be considered.

In the review by Ladegaard-Pedersen and Dally it is concluded that the wide variations in geometrical and geological conditions on typlcal blasting sites preclude the solution of ground vlbration problems by means of elastodynamic equations and that the most reliable predictions are given by empirical relationships developed as a result of observations of actual blasts. Of the many empirical relationships which have been postulated, the most rellable appears to be that relating particle velocity to scaled distance.

The scaled distance is def ined by the function R / \sqrt{W} where R is the radial distance from the point of detonation and W is the weight of explosive detonated per delay. The U.S. Bureau of Mines has established that the maximum particle velocity V is related to the scaled distance by following relationship:

$$
\begin{equation*}
V=k(R / \sqrt{W})^{\boldsymbol{e}} \tag{124}
\end{equation*}
$$

where \boldsymbol{K} and \boldsymbol{B} are constants which have to be determined by measurements on each particular blasting site.

Equation 124 plots as a straight I ine on log-log paper and the value of \boldsymbol{k} is given by the V intercept at a scaled distance of unity while the constant $\boldsymbol{\beta}$ is given by the slope of the I ine. A hypothetical example of such a plot is given in Figure 11.16.

In order to obtain data from the constructlon of a plot such as that given in Figure 11.16, some form of vibration measuring instrument must be available. Typical speciflcations for selsmographs and geophones, with which to measure vibration levels, are summarized in Tables X and XI .

Figure 11.16 : Hypothetical plot of measured particle velocity versus scaled distance from blast.

Typical values of k end B quoted by Oriard ${ }^{284}$ are :

Down hole blasting	$:$	$k=26$ to 260.	$B=-1.6$
Coyote blasting	$:$	$k=5$ to 20,	$B=-1.1$
Pre-splitting	$:$	$k=800$,	$B=-1.6$

TABLE X

TYPICAL SPECIFICATIONS FOR SEISMOGRAPHS*

Property	Unit	Range
Frequency response	HZ	2-250
Ranges :		
0 Seismic Particle Velocity 0 Sound overpressure	in/sec dB	$\begin{gathered} 0.5-8 \\ 100-140 \end{gathered}$
Trigger Levels		
0 Seismic o Sound	in/sec dB	$\begin{gathered} .04-2 \\ 110 \div 123 \end{gathered}$
Record Times	sec	1 to 7
Total Weight of Instrument	lb	<40

- From Instantel Inc. product specitications.

TABLE XI
TYPICAL SPECIFICATIONS FOR GEOPHONES*

Standsrd Natural Frequency	$10 \mathrm{~Hz} \pm .5 \mathrm{~Hz}$
Maintains Specifications	Up to $20^{\circ} \mathrm{Ti}$ it
Cl ean Band Pass	To $25 \times$ Natural Frequency
Standard Coil Resistance $20^{\circ} \mathrm{C}$	395 ohms ± 58
Intrinsic Voltage Sensitivity with 395 ohm coil	. $70 \mathrm{~V} / \mathrm{in} / \mathrm{sec}$
Sensitivity at 70\% damping	. $50 \mathrm{~V} / \mathrm{ln} / \mathrm{sec}$
Normalized Transduction Constant ($\mathrm{V} / \mathrm{In} / \mathrm{sec}$)	. $035 \sqrt{\text { Rc }}$
Moving Mass	. 388 oz
Typical Case to Coil Motion P-p.	. 06 in
Harmonic Distortion with driving velocity of $.7 \mathrm{in} / \mathrm{sec}$ P-P	. 28 or less at 12 Hz

[^5]

A range of these threshold values have been plotted in Figure 11.17 for different combinations of distance R and weight of explosive charge W. In plotting this figure, values of $k=$ 200 and $\beta=-1.5$ have been used in solving equation 124. These values are based upon an average range derived from a paper by oriard(289) and this plot should only be used for very general guidance. When damage is a serious potent is I problem, values of \boldsymbol{k} and $\boldsymbol{\beta}$ should be determined from a plot of measured particle velocities, such as that presented in Figure 11.16 plotted for these values.

Figure 11.17 shows that 1000 lb . of explosive detonated per delay will cause minor cracking ot plaster in houses at distances less than 500 ft. from the blast, while the vibrations wi I l be felt at distances of about one mile. Halving of the welght of explosive detonated per delay will reduce these distances to 300 ft . and $1 / 2$ mile respectively. Thus, the use of delays to limit the weight of explosive detonated per delay is a very important method of controlling both damage and reactions by the public to the blasting operations.

Control of Flyrock

When the tront row burden is inadequate or when the stemming column is too short, a crater is formed as illustrated in the -marginsketch. Under these conditions, rock is ejected from the crater and it may be thrown a considerable distance. In a

Flyrock problems are coused by cratering a. 9 a result of inadequate stenming or too small a front raw burder.

Typical vibration record.

Figure 11.17: Plot of particle velocities induced at given distances by particular charges.
study by the Swed I oh Deton Ic Research Foundat Ion(287), the maximum distance whlch boulders were thrown was studled for a range of powder factors and the results are plotted In Figure 11.18. Thls plot shows that, for the partleular rock mass and blasting geometry tested, the flyrock problem could be el iminated by reducing the powder factor to $0.2 \mathrm{~kg} / \mathrm{m}^{3}$. A low powder factor such as that required to el iminate flyrock may not g l ve adequate fragmentat lon and hence blast Ing mats wou I d have to be used to cover the blast.

An alternative to changling the powder factor would be to increase the front row burden and/or the length of the stemming column but, as polnted out earller in thls chapter, this could give rlse to chokling the blast and to poor fragmentation of the rock above the top load. A sterming column length of 40 blast hole diameters is recommended by the Swedish Detonlc Research Foundation for the control of flyrock and this Is In IIne with the optimum stomming column length of 0.67 to 2 times the burden which Is reconmended by Hagan(269).

A relatlonshlp between the blast hole diameter and the throw distance for a boulder of given slze was established by the Swedish Detonlc Research Foundation(287) and Is plotted In Figure 11.19. From this flgure It can be seen that a 1 m granite boulder would be thrown 40 m (130 ft .) by the craterling of a 50 mm (2 Inches) diametor charge. Thls result should provide ample Inducement for the blasting engineer to elther do something about control I Ing f lyrock or el se stand a long way from the blast.

Alrblast and Nolse Problems Assoclated with Production
Blasts Blasts

These two problems are taken together because they both stem from the same cause. Alrblast, whlch occurs close to the blast Itself, can cause structural damage such as the breaking of windows. Notre, Into which the alrblast degenerates wlth distance from the blast, can cause discomfort and will almost certainly giverise to complaints from those living close to the construction site.

Factors contributing to the development of an alrblast and nolse include overcharged blast holes, poor stemming, uncovered detonating cord, venting of developing cracks In the rock and the use of Inadequate burdens glv I ng r I se to crater Ing. The propagatlon of the pressure wave depends upon atmospheric conditlons Including temperature, wind and the pressure-altitude relatlonshlp. Cloud cover can also cause ref lection of the pressure wave back to ground level at some distance from the blast.

Figure II. 20 gives a usefu I guide to the response of structures and humans to sound pressure leval. Leglsiation In the USA now restricts blast nolse to 140 dB wich corresponds to the "no demagen threshold shown In FIgure 11.20.

The decrease of sound pressure level with distance can be predicted by means of cube root scalling. The scaling factor with distance K_{R} ls given by:

$$
K_{R}=R / 3 \sqrt{W}
$$

Figure 11.18 : Maximum throw of flyrock a 5 a function of powder factor in tests by Swedish Dctonic Research Foundation.

Figure 11.19 : Relationship between fragment size and maximum throw established by Swedish Detonic Research Foundation.

where $\quad R$ Is the radial distance from the explosion W Is the wel ght of charge detonated

Flgure 11.21 gives the results of pressure measurements carried out by the U.S. Bureau of Mines In a number of quarries (reported by Ladegaard-Pedersen and Dal ly(276)). The burden B was varied and the length of stemming was 2.6 ft . per Inch diameter of borehole. For example, If a $1,000 \mathrm{l}$ b. change Is detonated with a burden of 10 ft ., then the over-pressure at a distance of 500 ft . Is found as follows:

$$
\begin{aligned}
R / 3 \sqrt{W} & =500 / 3 \sqrt{1000} \\
& =50 \\
B / 3 \sqrt{W} & =10 / 3 \sqrt{1000} \\
& =1
\end{aligned}
$$

From Figure 11.21, over-pressure equals about 0.006 psi.

Figure 11.21: Over-pressure as a function of scaled distance for bench blasting.

Chapter 11 references

257	LANGEFCRS, U., and KIHLSTROM, B. The modern technique of rock blasting. John Wiley and Sons, New York, Second edition, 1973, 405 pages.
258.	GUSTAFSSDN, R. Swedish blasting technique. Published by SPI, Gotherburg, Sweden, 1973, 378 pages.
259.	COOK, M.A. The science of high explosives. Reinhold Book Corp., New York, 1958.
260.	JOHANNSON, C.H., and PERSSON, P.A. Detonics of high explosives. Academic Press, London, 1970.
261.	DU PONT DE MEMOURS \& CO. INC. Blaster's Handbook. Du Pont, Wilmington, Delaware, 15th edition, 1966.
262.	FRAENKEL, K.H. Manual on rock blasting. Atlas Copco AB and Sandvikens Jernverks AB, Stockholm, Sweden, Second edition, 1963.
263.	C.l.L. Blaster's handbook. Canadian Industries Limited, Montreal, Quebec, 1959.
264.	1.C.I. BI aster's Pract ice. Imperial Chemical Industries Limited, Glasgow, 1975.
265.	MCINTYRE, J.S., and HAGAN, T.N. The design of overburden blasts to promote highwal l stability at a large strip mine. Proc. 11th Canadian Rock Mechanics Symposium. Vancouver, October 1976.
266.	HARRIES, G., and HERCER, J.K. The science of blasting and its use to minimize costs. Proc. Australian Inst. Min. Metall. Annual Conf. Adelaide, Part B, 1975, pages 387-399.
267.	PERSSON, P.A. Bench drilling - An important first step in the rock fragmentation Process. Atlas Copco Bench Drilling Symposium. Stockholm, 1975.
268.	ANTILL, J.M. Modern Blasting Techniques for Construction Engineering. Austral Ian Civi I Engineering and Construction. November 1964, page 17.
269.	HAGAN, T.N. Blasting Physics = What the operator can use in 1975. Proc. Australian Inst. Min. Metall. Annual Conf. Adelaide. Part B. 1975, pages 369-386.
270.	WINZER, S.R., and RITTER, A., A field test of Du Pont new technology MS delay electric blasting caps. Martin Marietta Laboratories MML TR 79-44C, 1979.
271.	BORADBENT, C.D. Predictable blasting with in situ seismic surveys. Mining Engineerling. S.M.E., April 1974, pages 37-41.
272.	PIT SLOPE MANUAL (CHAPTER 7), Perimeter blasting. Canada Centre for Mineral and Energy Technology; Energy Mines and Resources, 65 pages.
273.	DU PONT OF CANADA. Controlled blasting. Booklet by du Pont of Canada Ltd., 1964.

274. MCCAULEY, M.L., HOOVER, T.P. FORSHYTH, R.A. Presplitting. California Dlvision of Highways, Research Report DA-DOT-TL-2955-4-74-32, 1974.
275. BUREAU OF PUBLIC ROADS. Presplitting - A controlled blasting technique for rock cuts. U.S. Dept. of Commerce, Washington, D.C., 1966, 36 pages.
276. LADEGAARD-PEDERSEN, A., and DALLY, J.W. A review of factors effecting damage in blasting. Report to the National Science Foundation. Mechanical Engineering Department, Universlty of Maryland. January 1975, 170 pages.
277. U.S. OFFICE OF SURFACE MINING REGULATIONS. Section 81662.
278. BOLLINGER, G.A. Blast vibration analysis. Feffer and SIrnons, Inc. Lodong and Amsterdam, 1971.
279. CRANDELL, F.J. Ground vibrations due to blasting and its effects upon structures. J. Boston Civil Engineers. Vol. 36, No. 2 1949, pages 222-245.
280. DEVINE, J.F., BECK, R.H., MEYER, A.V.C., and DUVALL, W.I. Vibration levels transmitted across presplit failure plane. U.S. Bureau of Mines Report of Investigations. 6695, 1966, 29 pages.
281. DEVINE, J.F., BECK, R.H., MEYER, A.V.C. and DUVALL, W.I. Effect of charge weight on the vibration levels in quarry blasting. U.S. Bureau of Mines Report of Investigations. 6774, 1966, 37 pages.
282. DUVALL, W.I .., DEVINE, J.F., JOHNSON, C.F., and MEYER, A.V.C. Vibration from blasting at lowa Limestone quarries. U.S. Bureau of Mines Report of Investigations. 6270, 1963, 28 pages.
283. DUVALL, W.I., and FOGELSON, D.E. Review of Criteria for estimating damage to residences from blasting vibrations. U.S. Bureau of Mines Report of investigations 5968, 1962, 19 pages.
284. DUVALL, W.I., JOHNSON, C.F., MEYER, A.V.C., and DEVINE, J.F. Vibrations from Instantaneous and mi I lisecond-delayed quarry blasts. U.S. Bureau of Mines Report of Investigations. 6151, 1963, 34 pages.
285. EDWARDS, A.T. and NORTHWOOO, T.D. Experimental Studies of the effects of blasting on structures. The Engineer. Vol. 210, September 30th, 1960, pages 538-546.
286. LEET, L.D. Vibrations from blasting rock. Harvard University Press. Cambridge, Mass., IWO.
287. LUNDBORG, N., PERSSON,A., LADEGAARD-PEDERSEN, A and HOLMEERG, R. Keeping the I id on flyrock in open pit blasting. Engineering and Mining Journal. May 1975, Pages 95-100.

11.45

288. DUVALL, W. I. Design requirements for instrumentation to record vibrations produced by blasting. U.S. Bureau of Mines Report of Investigations, 6387, 1965. 5 pages.
289. ORIARD, L.L. Blasting effects and their control in open plt mining. Proc. 2nd IntnI. Cont. on Stability in Open Plt Mining. Vancouver 1971. Published by AIME, New York, 1972, pages 197-222.
290. KONYA. C.J., and WALTER, E.J. Rock Blasting. U.S. Department of Transportation Technical Report, May 1985, 355 pages.
291. SKELLY and LOY. A Compl lance Manual - Methods for Meeting OSM Requirements. Publlshed by McGraw Hill, Inc., 1979.

Chapter 12 Stabilization and protection measures

Introduction

Expenditure of funds for slope stabilization programs is often justif led because unstable slopes can rarely be tolerated on h lghways, and because weathering of the rock tends to cause deterioration of slopes with time. This chapter descr i bes a Iternative stabilization methods and the conditions in which they can be used. Design of the stabilization work is carried out by the methods described in Chapters 7 through 10 for the appropriate type of slope failure; references to these design methods are included with each of the stabilization procedures. Note that each design method is particular to the type of slope failure, i.e. planar, wedge, circular or toppling, and it is essential that the type and cause of failure be identified.

The first step In planning a stabilization program is to identify potentially hazardous slopes which usually requires accurate observations of slope stability conditions and the maintenance of records over a considerable time period. These records, which can be kept by maintenance personnel, should contain the following information.

- Location of slope.
- Weather conditions, particularly during 24 hours preceding failure.
- Volume of failed material and height of fal I.
- Time taken to clear rock and stabilize slope.
- Belays to traffic and damage to highway and vehicles.
- Stabilization work carried out with time and costs.
- Warning received of failure from prior falls, or movement monitoring instruments (see Chapter 13).

These reports should be supplemented with photographs to record changes in conditions of the slope and the progress of stabilization work. Photographs in stereo pair are particularly useful for planning stabilization work. They can be taken with a regular 35 mm camera by taking two photographs from positions which are separated by a distance equal to about 2 to 5 percent of the distance of the camera from the slope. For more detailed work, terrestial or oblique aerial photogrammetry can be used from which contour maps and cross-sections can be drawn up. This information is usually required in making detailed stability studies and calculation of excavation volumes. High altitude aerial photographs rarely provide information sufficiently detailed for rock slope engineering.

By relating these records to the geological data contained on stability assessment sheets(1) discussed previously (see figure 1.6). information will soon be developed on the most hazardous areas and the consequences of the failure. This can then be used to schedule stabilization work, keeping in mind that slopes that have already failed are I ikely to be more stable than similar slopes that have not yet failed.

The selection of an appropriate stabilization method depends not only on the technical feasibility, but a Iso costs and the

Installing rock bolts from a crane and basket.
ease of Instal lation. For example, the least expenslve construct lon cost for rock bolt Instal I at lon may be to use a crane to put In a few, high capaclty anchors. However, If the use of the crane wllldisrupt troff lc because the shoulder ls too narrow to eccommodate the crane, then It would be preferable to have men on ropes dr I I I Ing holes for a greater number of sma Iler anchors because they can work Independently of the traffic. Another conslderation ls that stabllization work should be effective over a long time perlod and corners should not be cut to save costs. For example, anchors should be protected against corrosion, and blasting should be control led to ensure that the rock In the new face is not fractured by the explosives.

The design of stabll Izatlon work should be carrled out by exper lenced personnel who can draw on thel r know ledge of prev lous fal lures to estlmate such factors as rock strength and groundwater condltons. They will also know which stabli lzation methods are best sulted to the physlcal constralnts at the site. HIghway personnel with geologlcal englneering training who are famllar with local conditlons should be assigned to both the design and construction supervision tasks so they obtain feedback on the application of thelr deslgns. Consultants who speciallze in rock slope englneerling may also be required, on occasion, to asslst highway personnel with unusual problems.

Rock slope stabllizatlon work should usually be carrled out by speciallst contractors who have experlenced men and appropriate equlpment. For scaling and rock bolt Instal lation, equipment would Include compressors, hand-held percussion dril Is, a loader to clear broken rock from the highway and assorted ropes, hoses, plpes, drl| I steel and grout pumps. The men wllelther use climblng ropes to access the face or work off an alr-wlnch operated platform ("spldern). For larger excavatlonjobs, cranes and track-mounted dr I I Is and dozers may be requ I red. Rock work that requires men to $\mathbf{c l}$ lmb on steep slopes Is hazardous when snow and lce cover the slope so these projects shou Id not be scheduled for the winter In areas where such climatlc condltions oxlst. However, rock excavation work using heavy equlpment can proceed In almost all weathers. The types of contracts which are sultable for rock excavation and stablifation work are discussed In Chapter 14.

STABILIZATION METHODS

Slope stabllization methods can be divided Into three categorles as follows:

I Methods which reduce or eliminate the drlving forces, e.g., reduction In water pressure or excavation.

II Methods which Increase the resisting force, e.g., instal lation of support.

I I I Methods which protect the highway from rock fa I Is, or warn of hazardous condltons, e.g.. rock sheds, warning fences.

The following sectlons of this chapter descrlbe these stabll|zation methods, and the conditlons In which they are applicable.

Dralnage

As discussed In Chapter 6, groundwater pressures usually have a signif icant effect on stablility. Thl s is shown by the great number of slope fal lures that occur after heavy rolnfal I, durIng snow-melt perlods and during the winter when the face freezes and water pressures Increase. Consequently, stabllity conditlons can often be Improved by reducing water pressures, If they exist, by Installing dralnage systems. Furthermore, dralnage Is often an inexpensive method of stabllization.

The Installation of dralnage, as the prlmary stabllization method, should only proceed after careful investigation because one must be certal n that water pressures are the pr I mary cause of Instablility. Also, It can be difficult to produce effective dralnage of the slope, and ensure that the dralnage system is effective over the full llfe of the slope. To overcome these problems, piezometers should first be Installed to measure the actual pressure In the slope and calculate Its effect on stability. These plezometers can be used In the future to monltor the drawdown produced by the dralns. Another problem Is that the water Is contalned In the fractures In the rock so that the dralns wllionly be effective If they Intersect these water carrying fractures. Also, the dra Ins may eventually become blocked with Ice or si It and the pressures will Increase.

If the stabllity studles show that dralnage Is the best stablI Izat Ion method to use, then there are number of al ternat I ves from which to select (see Flgure 12.1). Thls Influence of water pressure on plane fallures is calculated using the design charts In Figure 7.31 and similar calculations can be carrled out for circular tallures using the design charts on page 9.8 through 9.13. Appendix 3 shows the analysls method for wedge fal lures.

Surface dralns: If water Is flowing down the slope and Into tension cracks, ditches can be dug along the crest to dlvert the water and prevent pond I ng, and the tenslon crack can be coverrd with clay or plastic sheets. If plastic sheets are used, they should be as strong as poss I ble and covered with sand to prevent damage from wind and vandal Ism. The sides of ditches can be relnforced with burlap bags filled with a sand/ cement mlxture, and If It Is suspected that water Is leaking from the ditch, It could be lined with shotcrete, asphalt, or other means.

Horlzontaldralns: If there Is no surface water to remove, then, It Is necessary to drlll holes to draln the subsurface water. The simplest method is to alll horlzontal holes Into the face to Intercept the water table behind the potential fallure surface, with a minlmum depth of about $1 / 3$ of the slope helght. The spacing between holes depends upon the permeablility of the rock, with closer spacing required In less permeable rock. Spacing may range from 20 to 100 ft . The direction of the holes shou I d be chosen so that the max Imum number of water carrylng fractures are Intercepted, and they are usually Incl Ined silightly above the horizontal. If there Is any danger that the holes will cave, then they should be llned with a perforated plastic plpe with the discharge In the ditch so that the flowl ng water does not erode the face.

Figure 12.1: Slope drainage and depressuriration measures.

Optimum location for subsurface drainage gallery in a slope.

Drain holes can be drilled with a standard track-mounted drlll, and holes can be fanned out from one locatlon to save moving and setting up time. Drill cut+ings should be thoroughly cleaned from the hole to ensure that these fine partlcles do not inhlbit dralnage. In particularly soft ground, an Aardvark drlll can be used which carrles the casing Into the hole as It Is drllled. When the hole ls complete, the blt Is dropped off and the rods are removed from inside the casing.

It should be kept In mind that the volume of water contolned In the fractures can be very smal il so that the dralns may be producing effective drawdown In the slope desplte there belng a very low discharge. In fact, no water may be visible at all If It evaporates as It reaches the face. Thls shows the Importance o f monltoring drawdown with plezometers.

Pumped wells: pumped wells conslst of verticaldrlll holes about 6 Inches In diameter, llned with a perforated casing and with a submersible electric pump at the bottom. The dlameter of the cone of drawdown produced by the pump Increases as the permeabl IIty Increases and the wel Is shou I d be spaced accordlingly(294).

It Is unl ikely that pumped wells would be a permanent stablilzation measure because of the necessity of supplying power and malntalnIng the pumps. However, they cou I be used as a temporary measure, or durlng constructlon, to stablllze the slope while horlzontal drains or anchors are belng Installed.

Dralnage gal lerles: dralnage gal lerles can be the most effective, but most expenslve method of oralning a slope. The effective diameter of this gallery can be Increased by drilling fans of drill holes around the gallery; holes may also be required to plerce layers of low permeabllity rock whlch are Inhlbiting downward f low of the groundwater (295).

Dralnage gal lerles are usually only justifled to stabllize large fallures where the forces Involved are so great that It Is uneconomical to unload the slope by excavating materlal from the crest. The gallery can be drlven without interrupting trafflc on the hlghway, and the cost of excavation may be lower than that of a large excavation project, unless the rock Is very soft and extensive support ls required. The marg In sketch shows the optimum position for a gallery(296).

Excavatlon

The princlple of stabllization by excevation Is that removal of materlal from the upper portion of the slope reduces the drivIng force. Alternatlvely, In the case of smal I fal lures, the entire loose rock is removed. The following is a description of alternatlve excavation stabllization measures.

Scaling and Trimming

Loose, overhanging or protruding rock on the face of the slope can be removed by scoling or trimming (see Figure $12.2 \mathrm{a}, \mathrm{b}$). Scalling Involves the use of hand scaling bars, hydraullc spll+ters or I Ight explosives to remove Isolated pleces of loose rock, while trimming Involves the removal of overhanging and potentially unstable rock. These operatlons are usually carried

out, for hlgh slopes, by men working from ropes or on cable susponded platforms ("splders") and, for lower slopes, from cranes or hydraul ic booms. If a crane Is used the basket must be tied to the slope to prevent It from swinging away from the face. Scaling and trimming are slow operations because moving on the face is slow and only light, hand-held equlpment can be used.

Careful Inspections of all scaling operations should be carrled out to determine the rock to be removed and ensure that the new face Is stable. For example, In Flgure 12.2(a) hand scalling of the loose rock wII form an overhang that wil have to be trimmed with llght blasting. All blasting that is carried out should be of sufficient strength to break the rock and not damage the remalning slope. Thls requires the drilling of carefully al Igned, closely spaced holes and the use of IIght charges. See Chapter 11 for detal ls of control led blasting procedures.

The frequency of scal Ing may vary between 2 and 20 years and depends upon the rate at which the rock weathers and the inf luence of such factors as lee-jacking, root growth and traff Ic use.

The trimming operation shown in Flgure $12.2(b)$ has created a unlfon slope face without benches. It is the recommendation of the writers that Intermediate benches on slope faces should be avolded because they rarely have the width to act as effective rock cotchment areas; it is preferable to form a wide ditch at the toe of me slope. The actual width of benches Is usually less than the design width due to loss of rock along the crest and fallure to remove rock at the toe of the upper cut. Furthermore, small rock falls mat do accumuI ate on the benches, further reduce their w dth and eventually form "skl jumps" which project fal ling rocks outwards to the highway. Cleaning of accumulated rock falls on benches Is rarely carried out because of the danger of working on high rock faces, and Is Impossible if a substantial fall cuts the access on to the bench.

Intermediate benches may be effective if they have widths of at least 30 ft . as shown in Figure 12.3, where the crest of the slope has been raved. The required w / d dh of the bench should be checked on the ditch design chart (figure 12.10a) which shows the required width and depth for the slope dimensions. If the width is Insufficlent, a berm or gabion should be constructed along the outside edge to trap rol I Ing rock, but only If the crest is stable.

Unloading

Where overal I fal lure of the slope Is occurring, rather than fal Is of Individual blocks of rock, stab1 lization can be achieved by excavating (unloading) the crest to reduce the driving force (Figure 12.3). The volume of material to be removed Is determined by stability analysis methods described earlier in the manual. The procedure for a back analysis is as follows. The position of the fallure surface Is estimated from the position of the tension crack, the geology, and possibly drllilng.

The type of slope failure and the causes of failure are Identified and a stability analysis is carried out using a factor of safety of 1 .O to determine the rock strength parameters. Then, using the same strength parameters and groundwater level, additional analyses are carried out to determl ne how much mater 1 al must be un I oaded to i ncrease the factor of safety to an acceptable level. Stability of all four types of slope failures - planar, wedge, circular and toppling - depend upon the slope height, which is reduced by unloading.

Si nce it may be necessary to unload as much as $1 / 3$ of the failure in order to stab1 lize it, thls work wi l l have to be done with earth-moving equipment except in the case of minor sl ides. For this equipment to have sufficient working space, the cut wlll have to be at least 20 ft . wide and preferably 30 to40 ft. wide. If blasting is required, vibrations should be kept to a minimum by reducing the charge weight per delay as much as posslble (see Chapter 11), because large vibrations may be sufficient to cause the slope to fai l. If the slope is moving during excavation, movement monitorlng systems (Chapter 13) should be set up to provide a warning of deteriorating stability conditions. This will ensure, if fal lure were to occur, that men and equipment wi I I have tlme to evacuate the slope.
ReslopIng
This stabilization method is applied in similar conditions to the unloading method when overall slope failure is occurring. If it appears doubtful that unloading will achieve long-term stability because extensive movement and rock breakage have occurred, then It would be necessary to excavate the slope at a flatter slope angle-"resloping" (see Figure 12.4). Much the same design and excavation methods and precautions are applicable in both unloading and resloping. The new slope should have a face angle that produces a satisfactory factor of safety based on the strenqth and qroundwater values determined from back analysis: In designing the cut dimensions, sufficient space must be left at the toe of the slope for equipment to operate which means that a triangular shaped excavation (in section) cannot be made. Intermediate benches should not be incorporated in the slope design unless a significant width, say 30 ft ., can be accommodated.

In both unloading and resloping, additional practical matters to consider are property ownership of the land along the crest and available areas for the disposal of the excavated material. Long hau is may be expensive, al though there is always the possibility that the material could be used for fill elsewhere at some cost savings over quarried materlal. Finally, controlled blasting should be used to minimize rock damage.

II REINFORCEMENT AND SUPPORT STABILIZATION METHODS

The following is a description of stab1 lization methods in which the forces resisting fal lure are increased by instal ling either reinforcement or support.

Re 1 nf orcement consists of instal ling bolts or cables across the failure surface to increase t ts strength, whi le support consists of instal ling dowels, wal Is, gobions o r buttresses at the toe of the failure. Usually, reinforcement is used for smaller failures where the forces are not great and the tension that can be applied to the anchors Is sufficient to produce a significant increase in the factor of safety. However, very high

Minimum operating width

Figure 12.4: Resloping.

(a) Untensioned bolts.
(b) Tensioned anchors installed through loose block.

Figure 12.5: Rock bolt installations.
capacity, multistrand cables are available to reinforce large rock masses.

Support ranges from dowels to hold small blocks In place, to buttresses that provide monollthlc support under large unstable blocks. The following is a description of the alternative stablllzation measures.

Rock Bolts and Cables
If there is potentlal for a block to slide down a plane, the reslstance forces can be Increased by Increasing the normal load on the plane. Thls can be achieved by installing rock bolts or cables, anchored in stable rock behlnd the failure surface, and epplying a tension (see Figure 12.5). The reactions withln the rock to this tension are normal and shear forces acting across the fallure plane, the relative magnitude of which depend upon the orientation of the bolt with respect to the fallure plane. These forces have a much greater Inf luence on increasing stabll ity than the shear strength of the steel across the fallure plane. Anchors can be used to stablIlze both Individual blocks and slopes ranglng In helght from about 10 ft . to several hundred feet. Detall of design methods for anchor support are given in Chapter 7 (page 7.17) by Lit+ leJohn and Bruce(297), the Post Tensioning Institute(298) and other authors(299-303). Different types of rock anchors are discussed below.

Rock Bolts

Rock bolts are rigld steel rods ranglng In size from about 5/8 Inch to 2 inches in diameter and up to about 100 ft . in length; long bolts are usually coupled together In 20 ft . sections. The surface of the bar is often corrugated, Ilke reinforcling steel, to improve the steel /grout shear strength. Rock bolts are elther grouted into the hole wlthout tensioning and subsequent movement of the rock tenslons the bolt (Flgure 12.5(a)), or they are tensloned at the time of installation (Figure 12.5 (b)).

Untensioned bolts (sometimes referred to as dowels) can be lnstalled from the floor of a bench so that subsequent removal of this bench and slight movement of the rock wll activate the support provided by the steel. If the bolt was tensloned, movement of the rock as a result of excovation may overstress the bolt. The technlque shown In Flgure 12.5(a) should be used whenever possible because, by minlmizing movement of the rock on the failure planes, the maxlmum rock strength is retal ned. Also the cost of Install Ing the bolts is much less than installlng tensioned bolts when the excavatlon is complete and a crane would be required for drlliling. Untens loned bolts are Installed by drilling a hole to the required depth, partially f II I ing it with cement or epoxy grout, and pushing in the anchor so that it ls grouted over its ful llength. Sufficlent time should be al lowed for the grout to set before set+ I ng off the next blast, and vibrations In the relnforced wall should be kept to acceptable levels (see Chapter 11).

Tensioned bolts are installed in blocks and slopes which are already showlng signs of Instabllity and Immediate support Is required. Any additional movement of the rock may decrease the
shear strength of the failure surface. Methods of installing and tensioning these bolts are discussed below:

Tensioned bolts are made from high tensile strength steel and have threads on the exposed end for a bearing plate and nut. The different types of anchors that can be used Include mechanical expansion shells, cement grout and epoxy grout. Both mechanlcal and epoxy grouts allow tensioning to be carried out soon otter installation which is an advantage If access to the site ls difficult. Mechanlcal anchors are usually some form of wedge which is expanded by turning or driving the bolt. Two component epoxy resins are packaged in plastic tubes and are mixed by rapidly rotating the bolt. By using resin with different settling times, the anchor will set in a few minutes and the remainder will set after the bolt has been tens ioned.

Cement or epoxy grout is usual $1 y$ used in soft rock where mechanlcal anchors could slip, and cement grout ls used tor all high capacity, permanent anchors. Cement grout should have a non-shrink agent added, and hi-early strength cement should not be used because it is brittle and sometimes contains reagents that accelerate corrosion. The length of the anchor zone Is calcul ated using the assumption that the shear stress Is uniformiy distributed along the periphery of the hole. Therefore, the required bond length (\mathcal{L}) Is calculated from the following equation:

$$
l \cdot \frac{\tau}{(\pi d) \tau}
$$

where T is the applied tension and d is the hole diameter. The working rock/grout interface shear strengths (2) used for design varies from about 50 psi in weak rock to 200 psi In strong rock. In general, the working bond strength is about $1 / 20$ to $1 / 30$ of the uniaxisl compressive strength of the rock. It is also found that the steel/grout shear strength is usually greater than the rock/grout shear strength.

Tensloning is carried out by pulling on the bolt with a hydraulic jack to a load of about 50 percent of the yield laad and locking in this tenslon by tightening the nut. Alternatively, a torque wrench can be used tor tensioning. but this is likely to be less reliable than using a hydraulic jack.

After tensioning, al I bolts should be fully grouted to provide corrosion protection and to "lock In" the tension. Mechanical anchors should only be considered temporary means of malntalning tension because corrosion of the anchor and creep in the highly stressed rock around the anchor can lead to loss of load. The bolt manufacturers' recommended installation procedure should be carefully followed.

Cables

Cables can be used to relntorce rock slopes in a similar manner to rlgid bolts as described above. However, cables have a greater strength than rlgld bolts of the same diameter and so can be used to stabilize particularly large rock

Dywidag corrosion protected cable anchor

Dowel installation to support sliding block.
masses (304-306). For example, a 1 inch diameter rigid bolt may have a working tensile strength of $25,000 \mathrm{lb}$. while a $1 / 2$ inch, 7 -wire strand cable has strength of $40,000 \mathrm{lb}$. If greater strengths are required, then bundles of as many as 50 cables can be used. A further advantage of cables is that their flexibility allows them to be coiled which facilitates installation where space is limited and rigid bars could only be used if they were coupled together in short lengths. Cables can be either tensioned or untensioned in identical applications to rigid bolts and the same design methods (see Chapter 7) are applicable.

Because of the high tension on cables, cement grout anchorage is usually used which must be allowed to set for several days before tensioning. Before installation begins, the hole should be tested to see if fractures have been intersected through which grout cou Id flow out of the hole and prevent fu II embedment. If the hole cannot be filled with water, then it should be fi led with a low slump grout to seal the fractures and re-drilled when the cement is partially set (299).

The anchor is formed by pumping grout down a grout I ine so that the hole is filled from the bottom, with particular attention being paid to ensuring that the head is fully protected from corrosion with grout and anti-corrosion agents. When the grout has set, the tension is applied with a hydraulic jack using load/deformation monitoring procedures as specified by the Post Tensionary Institute (298). The applied tension is maintained by securing the cables with tapered wedges which are pushed into tapered holes in the bearing plate. When the grout has set, the tension is is applied with a hydraulic jack. The applied tension is maintained by securing it at the collar with tapered wedges by using a bearing block with a tapered hole through which the cable passes. The pair of tapered wedges are fitted around the cable and pushed into the tapered hole so that they grip the cable and hold the tension. The slze of the bearing plate should be sufficient to distribute the load without fracturing the rock under the plate.

Dowels

Dowels are lengths of relnforcing bars, or blocks of relnforced concrete, Installed at the toe of potentlally unstable blocks to provide passive support agalnst sllding (see Flgure 12.6). This support ls provided by the shear and bend Ing strength of the reinforcing steel, or the shear strength of the relnforced concrete. The number of dowel s required to support a block Is calculated as follows (see margin sketch).
Factor of Sofety, $F=\frac{W_{\cos } W_{D} \cdot T a n \phi+R}{W_{\sin } W_{\rho}}$
(126)
where: W = welght of block

W_{D}	$=$ Inclination of silding plane
\varnothing	$=$ sliding plane friction angle
R	$=$ support provided by dowel

The design methods descrlbed In Chapter 7 can be used to develop equatlons which Include the effects of cohesion and water pressure.

The support provided by the dowel Is the lesser of elther Its bending strength or Its shear strength, as follows:
Bending, $R_{b}=\frac{\sigma_{t} \cdot l}{\Gamma \cdot d}$
(127)

Shear, $R_{s}=\tau \cdot \pi \cdot r^{2}$
(128)
where: $\sigma_{t}=$ tenslle strength of steel
$I=$ moment of Inert I a of bar
$\Gamma=$ radius of bar
$\underset{\tau}{d}=$ moment arm of load on dowel
$\mathcal{Z}=$ shear strength of steel.
These equatlons show that the support Is Increased by IncreasI ng the dlameter of the bar, and that the bending resistance is decreased by having the block load the dowel above the embedment polnt In the rock. Thls lllustrates the Importance of Installing the dowel tight against the face of the block.

If extra shear resistance is required, then a number of dowels can be placed In a group whlch Is then encased In concrete poured against the rock face.

Commonly, dowels are 1 Inch to 1-3/8 Inch dameter relnforcing bar. Holes for thls slze dowel can be readlly drl lledwith hand-held equipment. The depth of embedment Is between 1 and 2 ft. depending on the quallity of the rock. The dowel Is fully grouted Into the hole and a concrete cap can be cast over the dowel to protect it agalnst corrosion and make sure the support Is In contact with the rock. If It Is not possible to drl II the hole at the toe of the block, then the dowel can be bent agalnst the face after Installation.

Trial calculatlons of dowel support using equations (126) to (128) and typical rock slope parameters show that a I-3/8 Inch dlameter bar will hold a block with a volume of about 5 to 15 cu.yd. Therefore, dowels should only be used to support smal I, Isolated blocks where scal Ing would not produce permanent stabllizatlon and bolting would be more expenslvr. As noted above, stronger dowels can be constructed from blocks of relnforced concrete.

Buttresses and Retaining Walls

Buttresses and retaining walls are usually reinforced concrete structures constructed at the toe of slopes, or beneath overhanging pieces of rock to provide support and resistance to sliding (see Figure 12.7(a)). Concrete buttresses are used to support overhangs that are difficult to remove because of access problems, or the danger that more rock higher up the slope may become unstable. The concrete buttress shou I d have sufficient mass and strength to resist the weight of rock and also be securely tied to the face with reinforcing tie-backs grouted into holes dril led In the rock. The tie-backs wil ensure that the buttress does not +i It outwards if the force applied by the rock is not coincident with the axis of the buttress.

The required strength of the buttress is the difference between the component of the weight down the failure plane and the re-

Figure 12.6: Dowels to support sliding blocks.

figure 12.7: Support at toe of unstable slopes.
slstence produced by the strength of this plane, with an appropriate factor of safety applled. The actual design used wlll depend upon the type of fal lure.

The top of the buttress must be In continuous contact with the underside of the block to prevent movement from occurring before the support becomes offectlve. In some cases, it may be necessary to use a nonshr I nklng agent In the last concrete pour to ensure good rock/concrete contact. To prevent bul I d-up of water pressure behind the buttress, drain holes should be let through the concrete.

An alternative form of buttress to stabllize a sllding fal lure Is to place a sufflcient mass at the toe to support the slope (see figure 12.7(b)). Thls can often be achleved by placing plles of tree-dralning rock, or Instalilng gablons. Gablons are rock-f I I led wire baskets that can be jolnted together to form walls that are strong and less expensive to construct than relnforced concrete. The dimenslons of the baskets are usually cubes with 3 ft . side lengths. An advantage of a toe buttress Is that the slope can be stabllized without providing access to the crest of the slope. A disadvantage of gablons is that they can be readlly damaged by vandals.

Toe buttresses can usually on!y be used to stabllize small sildes because the quantity of rock required can be substantlal which requires conslderable space between the toe of the slope and the highway. However, some relocation may provide sufficlent space for a toe buttress.

Retalning walls are another means of stabllizing sllding slopes. They are usually concrete, or sometimes timber, structures designed to resist the Inclined thrust of the slope. Methods of designing gravity type walls are described In the solls mechanles Ilterature(307) and will not be discussed further here. In stabllizing rock slopes, particularly where there is Ilt+le space between the highway and the toe of the slope, It Is usually necessary to use tle-backs to prevent overturning. Tle-backs are rock bolts or cables that are anchored In stab le rock behind the fal lure surface. The concrete wall is then bullt so that it forms a large reaction block to the tension generated In the anchors. The foundat Ion of the wall shou Id also be securely attached to sound rock wlth dowels to Increase Its reslstence to sllding. Drain holes should be let through the concrete to prevent bul Id-up of water pressures.

In some cases, a serles of concrete pllars, Instead of a contlnuous wall, may provide sufflclent support and save on the quantlty of concrete required.

Cable Lashlng

Isolated blocks of loose rock that cannot be removed, can be secured In place with cables tensloned across the face of the block and anchored In sound rock on elther side (see Flgure 12.8). Tenslon can be applled by means of turn- buckles or "come-a-long" winches and then cable clamps are used to hold the tenslon. Care should be taken to ensure that each component of the system, l.e., cables, clamps, eye-bolts and rock anchors are equally strong and can withstand some Impact looding in the even? of sudden fal lure. Where the cable is In contact with

Design methods that quantlfy the impact loads of rock fal is and avalanches are not well developed. However, recent work on snow avalances using fluid mechanics principles can be applled to the design of rock sheds(314).

Tunnels are the most positive method of protection from rock fal ls. The cost of driving and supporting a tunnel may be less than the cost of construct Ing a shed, depend Ing on how much support is required(315).

Relocation

In cases where a large landsilde is occurring, It may be more economlcal to relocate the highway rather than to try and stabl I lize the silde. The feasibl Ilty of relocationwlil depend on such factors as property ownershlp and al Ignmen?, and care should be taken to ensure that the new location is on stable ground and no+ an extension of the originalside.

EXAMPLE OF SLOPE STABILIZATION PROJECT

The following Is a description of a project that was undertaken to reduce a rock fall hazard on a rallway and hlghway. It Involves blastlng for a ditch excavation, control of blasting damage and rock bolting.

SIte Description

The rallroad and highway are located on benches cut In a 250 ft. high, 40 degree slope above a river $\operatorname{In} 3,000 \mathrm{ft}$. deep canyon (see Flgure 12.15). In constructing the bench for the railroad, It had been necessary to construct about 100 ft . of retalning wal I and cu^{+}a slope that was about 900 ft . long and varled In helght from 20 ft . at elther end to about $100 \mathrm{f}+$. at the center. A slope had also been excavated for the construction of the highway.

A hazard to traff ic had developed due to rock fal is from the upper slope and It became necessary that some remedla I work be carrled out. Thls hazard was particularly acute because the track curvature restricted visibllity and tralns did not have sufficlent time to stop In the event of a rock fal I. Furthermore, even a minor derallment could cause rall cars to fal 1 onto the hlghway below. The rock falls varled In slze from less than 1 cu.yd. to as much as 10 cu.yds. and were most I lkely to occur In the spr Ing and fal I dur I ng freeze-thaw cycles when Ice formed In cracks and loosened blocks of rock on the face. DurIng the winter, the temperatures can drop to $-30^{\circ} \mathrm{F}$ and Ice can be a problem desplte the area belng somi-arldwlth a rainfall as low as 6 Inches annually.

The rock falls were occurring because, although the Intact rock was moderately strong, It was Intersected by a number of fracture planes (joints) with continuous lengths of several tens of feet. The length, orlentation and spacing of these fractures controlled stabl lity conditlons and the slze of the rock fal Is. FIgure $\mathbf{1 2 . 1 6}$ Illustrates that these fractures occur In three sets which were orlented such that they formed roughly cublc shaped blocks. The two near vertical sets would form the sides of blocks, which would silde if the thlrd fracture was inclined out of the slope. Weathering of the rock on these joint sur-

Figure 12.9: Shotcrete.
row weathered zones shou Id be deepened so +hat there is some sound rock on elther side to which the shotcrete can adhere. It Is also Important that water and lce pressures do not bulld up behind the shotcrete. Dralnage can be achleved by drilling holes into cracks In the rock, putting a dralnplpe In the hole and applying ?he shotcrete around the plpe. Alternatively, I nsu I ated dral ns can collect seepage water beh I nd the shotcrete and discharge It in a sump (310).

The strength of the shotcrete is improved, and the amount of rebound reduced, by pre-moi stur i zi ng dry-m ix shotcrete to about 3 per cent to 6 per cent moisture before it reaches the nozzle. The maximum distance that shotcrete can be pumped Is about 500 ft . horizontally and 100 ft . vertically depending upon the equipment available. Dry-mix shotcrete, i.e. the water is added at the nozzle, can be pumped further than wet mix shotcrete.

Control of shotcrete thickness Is difflcult on Irregular rock surfaces. Probably the mos ${ }^{\dagger}$ practical control method is to measure the area of the face covered and the volume used and ensure that the materlal ls belng evenly applled, keeping In mind that the amount of rebound may vary between 50 and 100 percent. Some coring with a small dlamond drlll may be cerrled out after the shotcrete has set to check thlckness and cement/rock bond, and obtain samples for testing. Another thickness tes+ ls to probe the shotcrete before It sets.

Detal Is of shotcrete practice and speclf lcations have been drawn up by the American Concrete Institute(311). Sample specIflcatlons are provided In Chapter 14.

III PROTECTION MEASURES

Condltons may exist where stabllization of a slope is elther so expenslve, or disruptive to trafflc, that It ls more economlcal to protect the hlghway from rock falls. Protective measures could also be used where It ls difficult to achieve permanent stabllization and continual malntenance will be required In the future. A number of different protection methods are dlscussed below.

Ditches

Ditches at the toe of slopes are an effective means of cotching falling rock and they can often be excavated at relatively low cost compared to the cost of stabllization. The required width and depth of a dltch depends upon the angle and helght of the slope, and the design chart In Figure 12.10(a) shows the relatlonshlp between these four factors(312). The chart shows that the ditch dimenslons are minlmized where the slope angle ls steep because rocks tend to fall vertically rather than bounce outwards off the face (Figure $12.10(b)$). The effectlveness of the ditch Is also Improved by having a vertical, rather than rounded slope on the highway side. Thls can be achieved by careful blasting of this slope If the rock Is competent, or by constructing a concrete or gablon wall. A gablon wal l has the advantages over a concrete wall of belng better able to withstand the Impact of fal ling rock because of Its f lexlbl I lty, and belng less expenslve to construc ${ }^{+}$and repalr. However, it+ can easlly be damaged by vandalism.

Figure $12.10(a):$ Ditch design chart.

Figure 12.10(b): Rock falls on slopes.

The effectlve depth of the ditch can be Increased by constructing walls along the outside edge rather than excavating materlal from the base of the ditch. Where posslble, the base of the ditch should be covered with loose gravel or sand to reduce the tendency of rocks to bounce. Al so, access shou ld be left for equipment to clean fallen rock that has accumulated In the ditch and reduced lts offectiveness.

An Important aspect of ditch design Is to ensure that excavation at the toe of the slope for the ditch does not oversteepen the slope and cause it to fal I.

Fences

Fences can be used to Intercept rocks rolling down slopes with angles less than about 40 degrees, l.e. talus slopes. On slopes steeper than th 1 s , rolling rocks tend to accelerate as they fall and a more substantlal structure ls required. Fences can also be used In narrow gul lles where the path of the fal I Ing rock ls well deflned.

Fences can consl st of wlre mesh or Inter I aced wire rope suspended from cables anchored to plns or posts In the rock face. The fence should be flexible so that lt can absorb the Impact of falling rock, and have the bottom open so that rocks do not accumulate In lt. Fences of thl s type are unl ikely to stop bou Iders larger than about 1 ft . across.

Fences have been used extenslvely on slopes above rallroads In Japan(313). To stop boulders less than about 3 ft . In dlameter, plles are sunk Into the slope and I Inch dlameter steep cables are strung horizontally between the plles. The helght of the fence Is about 10 ft. (see Flgure 12.11). To stop larger boulders 10 ft. diameter relnforced concrete plles are cast Into the slope and very strong mesh ls placed between the pl les. Some of these pl les are protected from the Impact of falling rock by 18 ft . dlameter corrugated steel sheathing with the annular space flled with rock.

Mesh

WIre mesh suspended down the face of a slope wl I Intercept fal Iling rock and direct It Into a ditch or catchment area. It Is usual ly suspended from plns and cables on the crest of the slope and draped down the face (see Flgure 12.12). The mesh can consist of 9 or 11 gauge galvanlzed chaln-| Ink mesh or gablon vire mesh. Gab lon mesh has the advantage that lt has a doub le twist hexagonal weave which does not unravel, I lke chain-I Ink mesh, when It Is broken. The bottom of the mesh blanket should be left open so that falling rock does not catch In the mesh.

Mesh Is not sultable where +he boulder size ls greater than about 1 ft . d lameter and the slope Is steeper than about 40 de grees. On these slopes, the Impact of rol I Ing boulders may be sufficlent to break the mesh. Thls can be overcome by securlng the larger boulders with rock bolts and anchorlng the mesh to the face with plns so that rocks are prevented from galning momentum when they come loose. However, eventua I I y these rocks may accumulate behlnd the mesh and have suff iclent welght to break It.

Where the cost of stabllizatlon Is very high and rock falls are Infrequent, warning fences can be constructed. These fences contain wires tha+, when broken by a rock fal I, activate stop llghts on the highway. Warn ing fences are often used on rall roads where the warning lights are Incorporated Into the slgnal system. The fences cons Is+ of a row of poles a+ the toe of the slope with horlzontal wires stretched between them at a vertical spacing of between 1 and 2 ft . Overhead wires, which are supported on members cantl levered out from the top of the pole, are often requlred where the face is steep and close to the rlght-of-way (see Flgure 12.13).

Disadvantages of warning fences are +hat false alarms, due to minor rock falls or vandalism, can serlously dlsrupt traffic. Also \ln cold climates, lcicles and minor snow slldes can set off the warnlng llghts. I+ may be posslble to overcome these problems by modifylng the locatlon and spacing of the wires to sul? particular condltons. Another problem is that rock fa I is can occur after a car has passed the stop light so the drlver willobtaln no warning of the fal 1.

Rock Patrols
Another warning method that can be used where the cost of stabilization ls high, is to use rock patrols along dangerous sec+lons. Patrols have the advan+ages of rellabllity and flexibiI Ity slnce their frequency can be adjusted to the demands of traffic and weather condltions. The frequency of patrol s shou Id be Increased after heavy ral nfal I and dur Ing the spr Ing and fal I In climates where frost action wll lloosen rocks on the face. Patrols do have the dlsadvantage that they cannot glve 100 percent coverage and fal ls can occur between patrol s. Al so, there Is the cont I nu Ing cost of the patrol s and the requ irement to find rellable personnel who are willing to work In Isolated and some+imes hazardous condltlons.

The patrolmen should have some means of removing minor rock falls and have radio contact wlth malntenance crews in the event of a large fal 1.

Rock Sheds and Tunnels
In cases where the hazard from rock falls ls high and stabllization Is no+ feaslble, It may be necessary to construct a concrete shed over the highway, or to relocate the highway Into a tunnel (Figure 12.14). Whl le the constructlon cost of both these protection measures can be signiflcant, malntenance costs are llkely to be minlmal.

Concrete sheds should be designed wlth the roof inclined so that rocks roll across the shed with minlmum Impact. The concrete should also be protected with a layer of gravel, particularly If the slope is so steep that rocks can land directly on the roof. Much of the Impact load wll l be taken In the columns on the outer s I de of the shed. On steep mountalnsides, It may be difficult to found the columns on sound rock In which case It may be necessary to slnk pl les, Instal I relnforcement or, If no adequate foundatlons exlst, to construct a contilevered shed. Wing walls will often be required about the portals to prevent fal Is spilling on+o the highway.

Photographs courtesy of Canadian National Railway

Figure 12.14: Rock sheds and tunnels.

Design methods that quantlfy the impact loads of rock fal is and avalanches are not well developed. However, recent work on snow avalances using fluid mechanics principles can be applled to the design of rock sheds(314).

Tunnels are the most positive method of protection from rock fal ls. The cost of driving and supporting a tunnel may be less than the cost of construct Ing a shed, depend Ing on how much support is required(315).

Relocation

In cases where a large landsilde is occurring, It may be more economlcal to relocate the highway rather than to try and stabl I lize the silde. The feasibl Ilty of relocationwlil depend on such factors as property ownershlp and al Ignmen?, and care should be taken to ensure that the new location is on stable ground and no+ an extension of the originalside.

EXAMPLE OF SLOPE STABILIZATION PROJECT

The following Is a description of a project that was undertaken to reduce a rock fall hazard on a rallway and hlghway. It Involves blastlng for a ditch excavation, control of blasting damage and rock bolting.

SIte Description

The rallroad and highway are located on benches cut In a 250 ft. high, 40 degree slope above a river $\operatorname{In} 3,000 \mathrm{ft}$. deep canyon (see Flgure 12.15). In constructing the bench for the railroad, It had been necessary to construct about 100 ft . of retalning wal I and cu^{+}a slope that was about 900 ft . long and varled In helght from 20 ft . at elther end to about $100 \mathrm{f}+$. at the center. A slope had also been excavated for the construction of the highway.

A hazard to traff ic had developed due to rock fal is from the upper slope and It became necessary that some remedla I work be carrled out. Thls hazard was particularly acute because the track curvature restricted visibllity and tralns did not have sufficlent time to stop In the event of a rock fal I. Furthermore, even a minor derallment could cause rall cars to fal 1 onto the hlghway below. The rock falls varled In slze from less than 1 cu.yd. to as much as 10 cu.yds. and were most I lkely to occur In the spr Ing and fal I dur I ng freeze-thaw cycles when Ice formed In cracks and loosened blocks of rock on the face. DurIng the winter, the temperatures can drop to $-30^{\circ} \mathrm{F}$ and Ice can be a problem desplte the area belng somi-arldwlth a rainfall as low as 6 Inches annually.

The rock falls were occurring because, although the Intact rock was moderately strong, It was Intersected by a number of fracture planes (joints) with continuous lengths of several tens of feet. The length, orlentation and spacing of these fractures controlled stabl lity conditlons and the slze of the rock fal Is. FIgure $\mathbf{1 2 . 1 6}$ Illustrates that these fractures occur In three sets which were orlented such that they formed roughly cublc shaped blocks. The two near vertical sets would form the sides of blocks, which would silde if the thlrd fracture was inclined out of the slope. Weathering of the rock on these joint sur-

faces, infllling with soll, and root growth had accelerated loosening of the blocks. However, the Intact rock Itself was sufflclently strong that It did not usually break up on Impact with the track.

Alternative stablliza+lon methods

The flrst method used to a+temp+ to control the rock fal ls was to use hand scal Ing and light explosives to remove the looses+ rock from the face, and to secure other potential ly loose rocks In place with the rock bolts. However, frost action on the slope cont Inued to produce occaslona I rock fal Is and It was declded that a more extenslve and longer term stabllization program, than perlodic scalling and bolting, was required. The following alternatives were considered:
a) Install rock bolts on a regular pattern to relnforce the rock, and then cover the face with w Ire mesh and app I y shotcrete to reduce the rate at wh I ch the rock was weather Ing. This alternatlve was rejected because It was bel leved that frost act lon and continued weathering of the rock behlnd the face wou I d soon cause the shotcrete to deter lorate. Furthermore, It wou Id have been expenslve to install rock bolts sufficlently long to ensure that they were anchored In sound rock.
b) Relocate the rallroad In a through-cut behind the face. Th Is wou Id have the advantages of be 1 ng able to excavate slopes In less weathered rock, and to work continuously with $11++1$ Interruption to trafflc. However, the disadvantages were that the volume of excavated rock would be substantial, the maxlmum slope helght would have approached 200 ft . and snow removal In through-cuts tends to be difflcult.
c) The stablll za+ion program adopted was to excavate rock to form a ditch at the toe of the s I ope that wou I d be of sufficient slze to catch rock fal ls. Rock bolts would be instal led, as required, to secure potential ly unstable rock. The major disadvantage of this alternative was that excavation work would be restrlcted to a few hours a day to minimize Interruptions to both rall and highwall traffic.

Ditch design

The required depth and width of a ditch that wll l be effective In cotchling rock falls depends upon both the helght and angle of the slope; the princlpies of designing an effective ditch are lllustrated In FIgure 12.10(b). Thls dlagram shows that the dimenslons of an effective ditch are minimized If the slope Is cut as steep as posslble. Of course a steep slope also minimizes the excavation volume, although care should be taken to ensure that the excavation does not over- steepen the slope and cause it to fal I .

The relationship between the required ditch dimensions and the helght and angle of the slope are shown In Flgure 12.10(a). This Information was used to design a ditch, the dimensions of which vary along the slope as the slope helght Increased from 20 ft . a+ elther end to 100 ft . at the center. Thus the minlmum
width and depth were 13 ft . and 4 ft . respectively whlle at the center, the ditch had to be 7 ft . deep and 23 ft . wide. In order to achleve this maximum depth, It was found that the most economlcal design was to excavate a ditch to a 4 ft . depth and then erect a 3 ft . high gablon barrler along the outside of the edge of the ditch. Thls saved the excavation of an extra 3 ft . thlckness of rock over the full 23 ft . width. An advantage of the gab I on, which Is a box shaped, wire basket fll led with loose rock, Is that it formed a vertical face which helps to prevent falling rock from rol iling out of the ditch and reaching the track. The gablon Is also flexible so that it can withstand Impact from fal I ing rock and can be read I ly repaired if damaged. It ls also less expens ive to construct than a concrete wall.

The plans required for the des I gn, and survey control dur Ing excavation, were obtalned by terrestrial photogrammetry from a palr of survey stations on the opposite slde of the rlver. From these photographs, a topographic plan and cross-sections were prapared. The dimenslons of the dltch were def Ined by offsets from the centerline of the track at 20 ft . section Intervals along the slope.

Excavat Ion method

The two Important objectlves of the excavation program whlch had to be achleved by the contractor were as follows:
a) Steep slopes had to be cut in thls moderately weathered rock. This required the use of very carefully controlled blasting to ensure that the explosive loads were just strong enough to break the rock but not damage the rock behind the face.
b) There had to be minimal interruptions to traffle both on the highway and the rallroad. Thls required the use of a blasting method that would not damage elther the rall or the retalning walls, and would also minimize the amount of rock thrown onto the ral I road and highway so that clean-up +1 mes would be minimized. The traffic closure schedule that was drawn up al lowed a f l ve hour closure on the rallway and a 45 minute closure In every hour on the highway.
The excavation method adopted by the contractor was as fol lows. The minlmum ditch excavation was too narrow at the top of the cut to allow equipment access, so a 20 ft . wide bench was first developed along the entire length of the slope just below the slope crest. Thls access bench was developed by working a face at both ends of the cut, orllling horlzontal holes parallel to the face with tank and alr-track drl I Is. A dozer then pushed the blasted rock onto the track. Prior to each blast, the length of track under the blast was protected with about a 4 ft . thickness of reject ballast. Once the top bench had been developed across the ful I length of the slope, It was then possible to excavate the remaling benches $\ln 15 \mathrm{ft}$. Ilfts using vertical holes. By cutting each bench vertically and drl I I Ing the back row of holes 4 ft . from the toe of the prevlous bench, an overall slope angle of about 75 degrees was achleved.

A number of trlal blasts were required to determine the optimum drill pattern and explosive load required to minImize damage to the rock behind the face. The blasting method final ly adopted was as follows:

on	hole pattern $=5 \dagger+. \times 5 \dagger^{+}$. hole dlameter $=2-1 / 2$ Inches explosive load $=9 \mathrm{lb} /$ hole, $0.5 \mathrm{lb} / \mathrm{yd}$
les on face	- hole spacing $=2 \dagger+$. explosive load $=3 \mathrm{lb} / \mathrm{hole}, 0.04 \mathrm{lb}$

Wooden spacers 18 Inches long were used between 5 Inch long explosive sticks to distribute the load evenly In the rock.

The delay sequence was set up with each row perpendicular to the face so as to minlmize the volume of rock that was thrown onto the track. The row of closely spaced holes along the bench face was fired last In sequence to ensure that they had a freeface to which to break. Flgure 12.17 shows the completed slope with drl I I Ing In progress for the excavation of the ditch.

Control of blast damage

As the excavation approached track level, the blas ${ }^{+}$vlbrations had to be control led to ensure that there was no damage to elther the structure, or to the retalning walls outside the track. Damage to structures from blast vibratlons is related to the peak particle velocity of these vibrations. Experlence has shown that masonry retalning walls such as the ones a+ this slte were unllkely to be damaged If the peak particle velocity does not exceed 4 Inches per second. The magnltude of these vibrations depends upon the maximum charge welght detonated per delay. In order to determine what welght of explosive could be detonated per delay, a number of vibration measurements were taken for the initlal blast and from these measurements a blast control chart was drawn up (see Flgure 12.18). Thls chart relates the distance of the blast to the maximum permissible charge welght that can be detonated on a slngle delay. By keepIng within these guldelines, the excava+ Ion was completed without damagling the walls.

When the excavation had been completed, selectlve rock bolting was carrled out where natural fractures were or lented to form potentlally unstable blocks. The drilling and bolt installation was carrled out In a basket suspended from a crane located in the ditch. Thls method was adapted Instead of Installing bolts from each bench as the excavation proceeded, because use of the wagon drlll for bolting would have slowed the excavation program. Also the blast vlbrations may have damaged the grou+ around the bolts. The bolts used were 1 Inch diameter hollow bolts elther 8 ft . or 14 ft . Iong. Each was tensloned to 25,000 lbs. and fully grouted to both lock In the tension, and to protect the bolt from corrosion.

The final step In the excavatlon program was to construct a 3 ft . square gablon, 500 ft . Iong on the outside edge of the ditch where a 7 ft . depth was requlred. Flgure 12.19 shows a photograph of thls gablon and the completed ditch.

Figure 12.18: Blast damage control chart.

Figure 12.17: Completed slope with drilling in progress for ditch excavation.

Figure 12.19: Ditch after construction of gabion.

Contracts

A target type contract was used for this project to give the contractor incentive to control costs, while providing flexibi lity in the event of changed quantities or more traffic interruptions than set out in the contract. Each bidder supplied the owner with an Original Target Estimate based upon the design value of rock to be excavated, and a lump sum price for access construction. This estimate was adjusted upon job completion, for changes in quantities or work type, to become the Final Target Estimate. A penalty clause for over excavation beyond the design line was also included to encourage the contractor to reduce over-break from blasting and to excavate the minimum amount of rock. Since payments to the contractor were based upon actual costs, each bidder was requested to supply llsts of rates for labour and equipment, and to provide back-up calculations for the Original Target Estimate.

The fee or profit to the contractor was quoted separately in the tender and could be adjusted to reflect the difference in the Final and Original Target Estimates. To provide an incentive, the fee was on a sliding scale: if the actual cost of the work was greater than the Final Target Estimate then the fee payable would be reduced by x percent of the difference; if it were less than the Final Target Estimate then the fee would be increased by y percent of the difference. Both these percentages were bid items and were 10 percent and 40 percent respectively.

Several contract problems developed during the course of the project; the following are suggestions on how they might be avoided.
a) A lunp sum payment was to be made for a I I access construction and rock excavated outside the ditch design l ines. This matter was discussed at the prebid site meeting, but later disagreements arose over the definitlon of rock that was to be paid for in the lump sum payment, and that which was to be paid at cost. It is suggested that these two classes of rock be very clearly defined and that records of pre-bid meetings be included in the contract.
b) Trains delayed work on 50 percent of the working days, interrupting the coordinated rai Iway-highway closure schedule. Production losses due to delays should be estimated and spelled out in the contract so that the contractor can include this item in his bid calculation.
c) The blds should be analyzed to ensure that the contractor is not "low-balling" his bid and that his quoted rates are out-of-pocket costs and do not include profit.
d) The contract should include an "upset price" to ensure that the contractor does not prolong the job for which he is paid cost plus the minimum fee.
290. BEHR, H., KLENGEL, K. J. Stabl I ity of rock slopes on the German State Rallway. Deutsche Elsenbahntchnlk, Germany, pp. 324-328, 1966.
291. BAKER, R.F., MARSHALL, H.C. Control and correction, landslides and englneerlng practice, HRB Special Report 29, Publ. 544, 1958, pp. 150-187.
292. ZARUBA, Q., MNCL, V. Landslldes and their control. Elsevler, Amsterdam, 1969.
293. PITEAU, D.R., PECKOVER, F.L. Rock slope englneering. Book on Landslldes: analysis and control, Chapter 9, Transportatlon Research Board, WashIngton, D.C., 1977.
294. CEDERGREN, H.R. Seepage, dralnage and flownets, J. Wl ley and Sons, New York, 460 p., 1967.

2\%. SHARP, J.C. Fluid flow through fissuredmedia, Ph.D. Thesis, University of London (Imperlal College), 1970.
2%. SHARP, J.C., HOEK, E., BRAWNER, C.O. Inf I uence of groundwater on the stablilty of rock masses - dralnage systems for Increasing the stabllity of slopes. Trans. Inst. MinIng and Metallurgy, London. Section A, Vol. 80, No. 788, 1972, pp. 113-120.
297. LITTLEJOHN, G.S., BRUCE, D.A. Rock anchors = state of the art (3 parts). Ground Englneering. May, July 1975, May 1976.
2%. POST TENSIONING INSTITUTE. Recommendatlons for Prestressed Rock and Sol I Anchors.
299. HOEK, E., LONDE, P. Surface workings In rock. Advances In rock mechenics, 3 rd Internatlonal Congress on rock mechanics, Denver, Vol. 1, Part A, pp. 6i3-654, September 1974.
300. WYLLIE, D.C. Brldge plers stabllizedunder trafflc. Rallway Track and Structures, July 1979.
301. LANG, T.A. Rock relnforcement. Bull. Assoc. Eng. Geol., Vol. IX, No. 3, pp. 215-239, 1972.
302. RAWLINGS, G.E. Stabllization of potential rock sildes In folded quartzite In Northwestern Tasmanla. Eng. Geol. Vol. 12, No. 5, pp. 283-292, 198.
303. REDLINGER, J.F.. DDDSDN, E.L. Rock anchor design, 1st Internatlonal Congress of Rock Mechanlcs, Llsbon, September 1966.
304. SEEGMILLER, B.L. Artiflclal stabllization In open pit mines: a new concept to achleve slope stabll lty. AIME Meeting, Vall, ∞, August 1975.
305. ECKERT, 0 . Consolldation de masslfs rocheaux per ancrage de cables (Consolldation of rock masses by cable anchors). Paris, Sols, Vol. 5, No. 18, pp. 33-40, 1966.
306. BARRON, K., COATES, O.F., GYENGE, M. Artificial support of rock slopes. Mining Research Centre, Mines Branch, Ottawa Research Report, R. 228, 145 p., 1971.
307. SOWERS, G.B., SOWERS, G.F. Introductory soilmechan ics and foundation engineering. Third edition, McMillan Publishing Co. Inc., New York, 556 p.
308. VAN RYSWYK R., Tunnel repairs. Construction West, pp. 10-I 1, September 1979.
309. RIAMAKRISHNAN, V., COYLE, W.V., FOWLER, L.J. A comparative evaluation of fibre shotcretes. South Dakota School of Mines and Technology, Report SDSM-T-CBS 7902, August 1979.
310. BREKKE, T.L. Shotcrete in hard rock tunnel ling. Bul I. Assoc. Eng. Geol., Vol. IX, No. 3, pp. 241-264, 1972.
311. AMERICAN CONCRETE INSTITUTE. Shotcreting. ACI COmmittee 506, ACI SP-14, Detroit, 1966.
312. RITCHIE, A.M. Evaluation of rock fal and its control. Highway Research Board, Record 17, Washington, D.C.DP. 13-28, 1963.
313. FUKUOKA, S. Personal communication.
314. MEARS, A.I. Personal communication.
315. HOEK, E., BROWN, E.T. Underground excavations i n rock. IMM London, England, 1981.

Chapter 13 Slope movement monitoring.

Typical plot of cumulative displacement against time showing acceleration period before failure.

Introduction
Circumstances can arise when it is not possible to stsbi lize potentially hazardous slopes and it is necessary that some method of detecting deteriorating stability conditions be installed. Stabilization of a slope may not be possible when weather conditions such as ice and snow make work hazardous for scalers, or when funds are not available. Other circumstances could be where a potential slope failure is identified but it is uncertain as to how close it is to failure, or when stablilzation work is unlikely to produce long-term improvement in stabliity.

Warning of deteriorating stablility conditions can be obtained by measurlng the rate at which the slope is moving and detecting the period of accelerating movement which always precedes failure. A typical movement/time plot of a failing slope is shown In the margin sketch. This chapter describes methods of monitoring slope movement, and recording and interpreting the results. These methods have been used successfully to predict the time of failure of a number of slopes(316-318), and they are presently widely used to monitor slopes adjacent to highways and rallways. Details of installation methods are avallable from the equipment suppliers and equipment originally developed for soil slopes is usually suitable for rock slopes.

Movement monitoring can be used in a wide range of conditions; for example, on large slides which are moving at rates as groat as several feet a month, on individual blocks which are susceptible to sliding or toppllag, and on bridge abutments where it is important that very small movements be detected. The method of monitoring depends upon such factors as the type and size of the failure, the magnitude and rate of movement and the warning system employed. In genera I, the successful application of movement monitoring depends upon carrying out three important steps:

1) Recognizing the type of failure and the probable causes of failure.
2) Making accurate and unambiguous movement measurements.
3) Correctly interpreting the results to determine when acceleration occurs.

The following is a discussion of these factors.

1. Type and cause of failure

The four types of slope failure discussed in Chapters 7 through 10 have a particular direction in which movement occurs and this should be considered when designing a monitoring system. Thus, planar and wedge type failures slide in a direction parallel to the inclination of the failure plane, circular failures show tension cracks and slumping at the crest and heaving at the toe, and toppl ing fai lures show hor Izontal movement at the crest with little movement at the toe (see margin sketch). The monitoring system that Is installed should be able to detect movement in the direction which it ls most likely to occur. Conversely, the measured direction of movement will provide information on the type of failure that is occurring. De-

(b) Ci rcuiar fai lure.

(c) Toppling failure.

Characteristic direction of movement of three common types of slope failure.
terminIng the cause of failure Is Important in order to obtaln the earliest possible warning of failure. For example, if hlgh groundwater pressures are the main cause of Instabll Ity, then the installation of plezometers to monltor increases in pressures wll provide an earlier warning of fallure than measuring movement. Other possible causes of fallure are vibratlons from nearby blasts(319) and excavation at the toe of the slope for road or ditch widening.

2. Accurate and unambiguous measurements

The monltoring system Installed should be sufficiently accurate to detect movements that are significant to stability. For example, a circular failure with a helght of a hundred feet may move several feet before coliapsing. Therefore, a monltoring system that can detect movements of $1 / 2$ inch to 1 inch is probably sufflciently accurate. However, on a bridge abutment, movements as small as $\mathrm{i} / 2$ inch may have a signlficant effect on stabll ity so the mon Itor Ing system should be able to detect movements as smal I as 0.1 inch. In making these measurements, one shou Id be sure that the survey resu lts are an accurate representatlon of the movement of the slope. In this way, one can draw confident conclusions as to whether or not hazardous conditions exist.

3. Interpretation of results

Rapid md reliable interpretation of the results Is important to ensure that one is oble to identify movement conditlons that are indicative of potential failure. The first step is to plot the measurements as graphs of movement against time because these graphs wII much more readlly show any change In the rate of movement than I ists of figures. Also, the graphs shou Id be brought up to date as soon as the measurements are made. Other methods of recording data, such as acceleration time plots, vectors and velocity contours, which asslst in interpreting results, are discussed later in thls chapter.

METHODS OF MEASURING SLOPE MOYEMENTS

Methods of measuring slope movement can be divided Into two general classes:

1) Surface methods - surveying, crack width measurements, tiltmeters.
2) Subsurface methods = "sonds", inclinometers, extensometers, shear strips, straln gauges.

Information on instrumentation systems is provided by manufacturers and such publications as Highway Focus(320).

The selection of the most appropriate method wll I depend upon such factors as:

Access to the slope - some slopes may be too steep or too hazardous for personnel to climb in order to make measurements, in which case remote methods of measurement are required.

Slze of fallure -on large failures It is preferable to use surveying methods to measure long distances rather than measure widths of individual cracks uhlch may not be open Ing at the same rate at uhlch the overall silde ls moving.

Magn Itude and rate of movement - slopes that are movIng slowly need a more preclse monitoring system than slopes uhlch are moving fast.

Frequency of readings - the frequency at rhlch readings are taken depends upon the rate of movement and the consequence of fat lure. The frequency should be Increased as the slope starts to accelerate, particularly If the road has not been closed to trafflc. If readings are made more frequently than about once a week over extended periods, then It may be preferable to Instal I an automatic system of recording the measurements, rather than a manual system, In order to save on manpower time and costs.

Warning systems = In particularly hazardous condi+lons, It may be necessary to Install an automatic warning system that closes the highway If sudden movements occur. Extensometers are particularly well sulted for Incorporation with warning systems.

Weather conditions - If measurements have to be made at night and In poor weather condlions, then surveyIng methods which rely on good visibl lity would not be sultable. Under these conditlons, extensometers, incllnometers or tiltmeters would be more appropriate.

Vandal Ism - all movement monltoring systems can be the object of vandallism unless access is particularly ditfleult. It might be necessary to Instal I secure protective housings If vandallsm becomes a problem.

Data hand I Ing - If there are only a few stations which are Infrequently measured, the movement graphs can be plotted by hand. However, If there are many stat lons which are frequently read, then automatic methods of t-ecording the results and updating graphs should be considered.

In general, the measur Ing system used shou Id be free of operator blas and capable of producing consistently reliable results over the full time perlod In which It Is likely to be In operatlon.

The fol lowing Is a description of methods of monl tor Ing slope movements.

SURFACEMETHOOS

Crack width Measurements

In almost al l'sildes, the opening of tenslon cracks on the crest of the slope is the first sign of instablility. Measurement of the width of these cracks wl I often be representative of the movement of the slide Itself.

The simplest means of measuring crack width ls to set palrs of steel pins, one on elther side of the crack, and measure the distance between the pins with a steel tape or rule as shown In Flgure 13.1. The advantages of th l s system are that the equipment is readlly avallable and can be set up qulckly, and that readings can be made and results analyzed immediately. The disadvantages are that the movement measured is not absolute because It Is olfflcult to locate the back pin on stable ground; this limits the system to small fallures. Furthermore, vertical movement is not readily measured. Also, safe access to the crest of the slope must be posslble In order to make measurements, and this wlll probably become dangerous when the width of the crack ls several feet.

Extensometers

As the slide becomes larger and It Is no longer posslble to use palrs of plns across the cracks, tensloned wire extensometers can be used to measure movement over a greater distance as shown In Figure 13.2. In thls method, a wire Is stretched across the tenslon cracks between a measurement stat lon estabI Ished on stable ground and an anchor Is secured on the crest. Relative movement between the station and the anchor Is Indicated by an adjustable block threaded on the wire whlch moves along a steel rule. This type of equipment can readily be manufactured from pleces of scrap metal and need not take the exact form shown In Flgure 13.2.

WIre extensometers have much the same advantages and disadvontages as crack width measurements. The main advantage is that It is easler to measure movement over longer olstances so that the measurement station can be established some distance behlind the tenslon cracks. In addition, the wire can be extended over the crest so that movement of the toe of the slope can a l so be measured. However, If thls Is done, correct lons for therma I expansion and contraction of the wire may have to be made. The accuracy of this system Is of the order of +0.25 Inches.

Another feature of the wire extensometer Is that It can Incorporate an alarm device that can close the highway In the event of sudden movement of the slope. In Flgure 13.2, the alarm device shown conslsts of a swltch mounted on the measurement statlon which is tripped by the movement of a second block threaded on the tensloned wire. In order to prevent false alarms when the slope is moving slowly and steadily, it is necessary that the trip block be set back from the trlp swltch at regular intervals. The set-back distance should be carefully selected to prevent false alarms and to ensure that adequate warning of fal lure ls obtained. A set-back distance of about 3 to 4 tlmes the movement that Is occurring between read I ngs cou Id be used as a guldelline when setting up the inltial system and thls can be modifled as movement data is collected.

Where more precl se movement measurements are requ I red, It may be necessary to purchase commerclal Instruments. For example, a tape extensometer conslsts of a steel tape with tittings at the ends whlch allow the tape to be attached to reference points on elther side of the tenslon crack (see Flgure 13.3). The tape is tensloned to the same tension every time a reading Is made by means of a proving ring. The accuracy of a tape extensuneter Is about ± 0.003 Inches.

Figure 13.1: Crack width measurements show movement of crest of failure.

Figure 13.2: Wire extensometer on crest of slope.

Figure 13.4: Tape extensometer.
Photograph courtesy of Slope Indicator Company

Figure 13.4: Sketch illustrating principles of wire extensometer.

Where precise, continuous monltorlng of a slope crest ls required, a multiwire extensometer can be Installed. Thls conslsts of a number of wires of different lengths with one end of each attached to an anchor grouted into the slope (see Figure 13.4). The other ends of the wires pass through a reference polnt so that movement can be measured between the anchor and the reference polnt. Measurements can be made elther with a mlcrometer or, If continuous, remote readings are required, a I Inear potentlometer is used. The readlngs from the potentlometers can be transmitted to a central recording station so that a number of extensometers can be monltored simultaneously. Methods of transmittling the data from the monltorling Instrument to the recording station Include electrical cable, radio transmitters and telephone I Ines(321).

Surveying

As the silide becomes larger, crack width measurements wl I I probably not be posslble because a stable reference polntwill be difflcult to find. Therefore, remote measurement using standard surveying technlques $w l l$ be required. The selection of the most appropr late method will depend upon the degree of accuracy requilred and the physical constralnts at the slte.

The general principles of any surveylng technlque are shown In Figure 13.5. Instrument stat lons are establ Ished below the slide, and their positions are determlned from a reference station on stable ground some distance from the slope. It Is essentlal that the position of the Instrument stations be checked agalnst the reference, because the slope beneath the instrument stations may also be moving. Monitoring points are establlshed on the silde and by regularly determining their positions, the movement of the whole sI I de can be found. These polnts should also be established behind and to elther slde of the expected extent of fallure, so that the llmits of Instabllity, as well as any increase \ln its slze, can be determined.

The different surveying methods that can be used for slope monltorlng are described below.

Electronic Distance Measurement

Electronic distance measurement (EDM) equipment can measure displacement to an accuracy of better than 1/2 Inch over slght dlstances of more than one mlle. The measurements are made In a few seconds so that an almost continuous record of movement can be obtalned. The Instruments also have built-in correctlons for variations in temperature and barometrlc pressure, and can be used at night If targets are I I luminated. The targets themselves consist of reflector prlsms costing about \$150 each and can be mounted on pleces of relnforclng bar drlven Into the ground or grouted Into dri I I holes. Most Instruments employed in surveylng work use an Infrared beam which Is adequate for most applicatlons. Over extreme distances, a laser Instrument may be required. One disadvantage of the surveylng technlque Is that it is not possible to make readings durlng heavy rainstorms or snowstorms, or when clouds obscure the targets, and thus a back-up system of extensometers may be usefu I during extended per lods of poor weather. Access to the slope to inspect prisms or change thelr orientations ls also desirable.

Figure 13.5: Surveying of slope movement.

Figure 13.6: Slope distance measurement with EDH equipment.

The simplest method of surveying Involves measuring the distance between the Instrument station and pr Isms on the slope, as can be seen In Figure 13.6. For this method to be accurate, it is essentlal that measurements be made parallel to the expected direction of movements otherwise only a component of the movement wlll be measured. This is Illustrated in Figure 13.5 where the northern half of the slide, which ls moving northeast, Is monltored from station 1 and the southern part, which is moving southeast, is measured from station 2. Information on the approximate vertical movement can be obtalned by measurlng the vertical angle to each station as well as the slope distance. Thls wlll give an Indication of the mode of tallurs, as discussed on page 13.1.

Triangulation, Offsets, Trllateration

More precise Information on the direction of movement and the fallure mechanlsm can be obtalned by finding the coordinates and elevation of each station, from whlch vectors of movement between successive readings can be calculated. A number of ways In which thls can be done are Illustrated in Figure 13.5. If there Is only one Instrument station, angles can be turned from the reference station to each prlsm, and the dlstance measured with EDM equipment (offsets). If there are two instrument stations, the positlon of each prlsm can be determined either by trlangulation, or by trilateratlon using EDM equipment. Best results are obtained if the three points form an equi lateral trlangle, and this should be taken Into account when settling out the basel Ins between the instrument stations.

Another alternotlve, which does not require the measurement of any angles, Is to determine the distance of the prlsms from three stations forming a tetrahedron(322).

EDM measurements are rapld and accurate, and surveying is useful in that it gives the three-dimensional position of each prism. Surveying does have the dlsadvantage that the measurements and the calculations are time-consumling and results are not immediately aval lable. Trlangulation, under Ideal conditlons, using a 1 second theodollte with all angles doubled, and an EDM measuring to $\pm 0.05 \mathrm{Inch}$ over sight distances of 1,000 ft . can glve errors \ln coordinate positions of as little as 0.12 Inches(323). However, It is likely that hlghway surveyors dolng rout Ine measurements In all weather conditions using equlpment In less than perfect adjustment will obtain overage errors of ± 4 Inches to ± 6 Inches. For this reason, coordinate determinatTons should onl y be carr led out when the expected movement distance between readings is greater than the magn itude of error.

Leveling

Information on the rate and extent of subsldence of an area can be obtained by making leveling measurements of a network of stations on the crest of the slope. This method Is only applicable where access to the slope crest Is possible and where the terraln permits reasonably long sight distances. Of course, it Is also important that a stable reference station be available. Leveling can be used in conjunction with EDM transit measurements to determine coordinate positlons where the terrain does not allow set-up of Instrument stations below the silde as shown in Flgure 13.5.

Illtmeters

TI Itmeters are Instruments that, when mounted on a ceramic plate rigidly attached to the ground, record the angular tlit of the plate. Changes In tilt of the plate of about $+10 \mathrm{sec}-$ onds can be measured by the tiltmeter and the readings are highly reproduclble. This Instrument can elther be left In place to continuously record tilting or can be carrled around the site and set up on each plate each time a set of readings Is made. The unlt welghs about 6 lbs. and Is easlly portable on rough terrain.

Tiltmeters should only be used when It Is certain that measurement of $+11+w 11 \mid$ be an accurate representation of slope movement. Usually, tiltmeters would be used in conjunctionwith other monltorlng methods. One possible appl Ication for tlitmeters would be on brldge abutments and plers where continuous and precise measurement of $+11+\operatorname{lng}$ Is required.

Photogrammetry

On some large slldes where It Is not possible to survey the whole moving area, the use of photogrammetry may be consldered. It Is likely that the minlmum error in coordinate position that can be obtalned with thls method Is 6 Inches. Whl lewide coverage will be obtalned, results will not be aval lable for severa I days or even weeks, and photographs can only be taken on cloud-free days.

SUBSURFACE SURVEYING METHOOS

It Is often useful to know the positlon of the fal lure surface, If it is not clearly deflned by the geological structure, so that the volume of the sllding mass can be calculated, the type of fal lure Identifled, and stabl I Ity analyses carrled out. AI I the methods of obtaining this information require drl I I holes and remote readings cannot be made as readliy as they can with surface measurements. The following is a description of methods that could be used on transportation routes.

Sond
The "sond" method consists of drilling a hole to below the expected depth of the fallure, casing the hole, and then lowering a length of steel on a plece of rope down the ho le. As the slope moves, the casing will be bent, and eventual ly it will not be possible to pull the steel past the distortion. Thls will indicate the base of the fallure plane. In a similar manner, a sond lowered from the surface wll show the top of the fal lure (see margin sketch).

Inclinometers

If the positions of several fat lure surfaces and the rate of movement Is required, an inclinometer can be used. This Instrument precisely measures small movements over the length of the hole and also glves the plan direction of movement. However, If the movement rate is great, the casingwlil bend at the fall ure surf ace, and the Instrument may be lost In the hole.

Plot of inclinometer data.

The Instrument operates in an identical manner to the $1 \|$ theter described previously in that It makes precise measurements of the tllt of the borehole. By making measurements at flxed Intervals up the casing, a plot of the Incl lnat Ion of the borehole is obtalned (see margin sketch). The casing has grooves cut In the wal is to prevent the instrument from rotat Ing as It Is pulled up the hole. This enables the direction of movement to be determined. The casing Is a speclal ltem that must be purchased from the manufacturer of the Incllnometer.

Borehole Extensometer

The multiwire extensometer described previously (see Flgure 13.4) can readly be installed In a borehole (hole dlameter 2-1/2 to 3 Inches) with the wires anchored at different positlons down the hole. The relat lve movement of the rock between anchor positions and the collar of the borehole Is Indicated by movement of the ends of the wires at the col lar. The longest wire should extend beyond the fallure surface so that lt forms a stable reference polnt as the collar moves.

Most types of extensometers requ ire that the wires be tens loned to a standard tenslon each time readings are made. Thls requires the use of a special tensloning/reading Instrument that must be kept In good adjustment and that careful measurements be made by quallfled personnel. However, extensometers are now avallable In which the wires consist of 1/4 Inch dlameter strands that are sufficlently rigid not to require tensloning. Measurements can be made with a standard dial gauge whlch is not as subject to error as the tension Ing Instrument.

When designing an extensometer system one should be sure that the Instrument Is Installed parallel to the direction of movement because it can only reglster tension or compression. Therefore, extensometers are Ideal for measuring the depth of movement In a toppling fallure. In a clrcular fallure where shear displacements are occurring on the failure surface, a "shear str Ip" movement Ind icator Is more appropr late. This In strument conslsts of a strlp of electrical conductor that is broken by movement on the failure surface; this ${ }^{\prime \prime} 1$ I show the depth down the borehole of the surface, but not the rate of movement.

Rock Bolt Load Calls

In conditlons where rock bolts are a critical part of a stabllization program, it may be required that the tension in the bolt be monltored to determine If creep, or loss of anchorage Is occurring. Tension can be measured by plac Ing a load cell between the nut and the plate on the face of the slope, or by attachlng straln gauges to the bolt. If straln gauges are used, It Is useful to have access to the gauge after Installatlon In the event that the gauge has to be rep I aced. If a load cell is used, this may require the design of a speclal nut and plate arrangement to avold untensioning the bolt in the event that It is necessary to change the cell.

INTERPRETING MOVEMENT RESULTS

In order to use monltoring to successfully decide whether traff Ic may, or may not, continue to travel below a falling slope, the movement data must be correctly and rapldiy Interpreted.

Figure 13.7: Typical shape of movement/time plot preceding fai lure.

Figure 13.8: Velocity/time plot highlights
changes \ln movement rate.

The most useful method of dlsplaying movement data is to plot cumulative slope movement agalnst time as Illustrated In Figure 13.7. This graph wll readily show any Increase In the rate of movement that Is Indicative of deter lorating stabllity condlt lons. SInce the appearance of the graph is dependent on the scales chosen for the axes, these dlmenslons should be carefully selected to ensure that acceleration Is clearly Identifiable. This means that monltorling should start when instablilty f Irst becomes apparent so that the steady rate of movement can be establlshed.

The frequency of measurements wll I depend upon traff ic condit lons. On low volume roads monthly readings may be sufficlent, but on major highways hourly readings may be necessary If rapld movement Is occurring. Figure 13.7 shows that sometlmes several cycles of acceleration may occur before fal lure and that the total displacement Is usually substantlal. Also, the acceleration period wlll often have a duration of several days or weeks, thus producing an adequate warning of failure. However, It should be noted that planar type fal lures may occur with much less warning.

Further informatlon on stability can be obtained by plotting movement veloclty agalnst time, where the gradent of the graph Indicates the acceleration of the slope (see flgure 13.8). In this figure, the slope accelerated for the first flive days and then moved at a constant velocity. If $1+$ were necessary to halt trafflc during the acceleration period, It may be posslble to reopen the road If the slope contlnues to move with zero acceleration. Frequent mon Itor Ing wou I d be requ Ired under these circumstances.

Monltoring data can also provide Information on cerlalextent, mechanlsm, and depth of fal lure. In Flgure 13.9, contours of slope velocity plotted on plan show the size of the silde and the fastest moving areas. These contours can be used to declde hor stabllizatlon work should be scheduled to minlmize traff lc closures. For example, for the slope fal lure shown In Figure 13.9, stabllization should start In the south end of the sllde uhich is the fastest moving area.

Plan plots of displacement vectors obtained from triangulation wlll show the direction of movement. Also vectors plotted on sectlon often have dlp angles parallel to the fal lure surface beneath them, uhlch may indicate the geometry and mechanlsm of fallure, as Illustrated In Flgure 13.10. Thus, In a clrcular fal lure, prisms near the crest wlll tend to have movement vectors with steep dip angles, whlle prisms at the toe wll move approximately horlzontally, or even slightly upwards.

If monltoring of a large sllde contlnues for some time, a conslderable amount of data $w 1$ II soon be accumulated and the plotting of movements and vector will become most +1 me-consuming. In fact, it may become difflcult, In circumstances that require a rapld assessment of stabllity conditions, to make quick reliable interpretations of large volumes of data. Fortunately, storage of survey data, calculation of vectors, and plottIng of movement graphs Is an Ideal application for computers. In this way, movement plots of many stations over any tlme span can be prepared In a for minutes.

Figure 13.9: Contours of slope movement show extent and relative
movement rates of slide.

316. WYLLIE, D.C., and MUNN, F.J. The use of movement monitoring to minimize production losses due to pit slope failures. 1st International Conference on Stability in Coal Mining, Vancouver, B.C. 1978.
317. KENNEDY, B.A. Some methods of monitoring open pit slopes. 13th Symposium on Rock Mechanics, Urbana, I I Iinols, 1971.
318. BRAWNER,C.O., STACEY, P.F. and STARK R. A successful application of mining with pit wal I movement. Canadian Inst. of Mining and Metallurgy Bulletin, April 1976.
319. ORIARD, L.L. Blasting effects and their control in open pit mining. Second International Conference on Stability in Open Pit Mining, Vancouver, Canada, 1971.
320. HIGHWAY FOCUS. Compilation of papers on instrumentation from various sources - principle authors J.P. Gould, C.J. Dunnicl iff. Vol. 4, No. 2, June 1972.
321. PIT SLOPE MANUAL, CHAPTER 8 MONITORING. Mining Research Laboratorles, Canada Center for Mineral and Energy Technology, Ottawa, Canada, 1977.
322. HEDLEY, D.G.F. Triangulation and $\operatorname{tr} \mathbf{i}$ lateration methods of measuring slope movement. Canadian Department of Energy Mines and Resources, Mines Branch, Mining Research Center, Internal Report 72/69.
323. YU, Y.S., HEDLEY, D.G.F. A trial of monitoring slope wall movement at Hilton Mines using a high precision theodoI ite. Canadian Department of Energy Mines and Resources, Mines Branch, Mining Research Center, Internal Report 73/18.

Chapter 14 Construct ion contracts and specifications.

Introduction
Contracts between owners and contractors are legal documents and must comply with federal and state laws. Standard genera provisions are usually available to the owner, and federal and state agencies have well established procedures. Many sources are available to assist in contract preparation, including references 261 and 324 through 328. This chapter wi l concentrate on the types of construction contracts and the writing of specifications for rock slope engineering.

SELECTING THE TYPE OF CONSTRUCTION CONTRACT
Many types of construction contracts are used for rock excavation and stabilization on highways, and we con look to the United States highway construction requirements as a broad class of contracts for this type of work. The Federal Procurement Regulations(324) describe all the types of contracts and point out that contracting can be done either by formal advertisement or negotiation. Since most highway work has many potential contractors and enough lead time to allow for formal advertising, this is the preferred method of contracting. This is very fair because cost is the selection criteria and the government (owner) has the work accomplished for the least cost.

In drawing up any type of contract for rock work, it is important that sane flexibility in quantities, timing and methods be incorporated in the specifications. This is necessary because it is rarely possible to precisely define the scope of work, especially on a slope stabilization program where the exact nature of the problem may only become apparent when access has been provided to the slope face and work has started. Because of the possibi lity of these "changed conditions" occurring, sane flexibility should also be allowed in the budget allocations so that more or less money can be spent at each location. In genera I, this can be handled by obtaining bid prices on unit quantities (e.g. cu.yd. of rock, l inear foot of rock bolt) and having provision for changing the estimated quantities as conditions demand.

Much rock excavation and stabil ization work requires special skills such as control led blasting, high scaling and rock bolt installation. Therefore, It is advantageous if both the contractor, and the engineer supervising the work, have experlence in the procedures involved. If bids are invited from al l contractors and the lowest bidder is accepted, then it is possible that the work wi l not be carried out to the required standards. This can be overcome by sending bid documents to selected, experienced contractors only, or by specifying the type of experience that the successful bidder must have obtained on previous projects. If there are no experienced contractors or inspectors avallable, then ful l-time supervision and "tight" specifications are required.

As discussed previously in Chapter 12 on slope stabilization methods, the supervising engineer should be involved with both the design and construction programs so that he obtains feedback on the success and applicability of his designs under different conditions. Because it may take several years to acquire this experience, and because methods used in one geological
envlronment may not be applicable In another, it Is usually worthwhl le to malntaln an in-house staff of exper lenced rock work engineers. If they are not avallable, or a-e overcommltted, then speclallst consulting services can be hlred.

SELECTING ME TYPE OF CONSTRUCTION CONTRACT

The fol lowing is a description of the varlous types of contracts that can be used on rock slope work, and typlcalconditions In which they may be appllcable. Any partlcular contract may be a combination of the types discussed.

Table XII summarlzes the content of these discussions and glves examples of the uses of the types of contracts for rock slope englneerlng. Keep in mind that most U.S. highway requirements w I I I be performed under advertised unlt pr Ice contracts.

UnIt Price Contract
The most frequently used contract In the Unlted States highway system Is the advertised "unlt-price" contract. The terms of thls contract provide that the owner wl I pay to the contractor a specifled amount of money for each unlt of work completed In a project. The units of work may be any Items whose quantitles can be determined, such as cublc yards of rock. Payments are usual ly made by the owner to the contractor at specl f led intervals during the perlod of construction, w ith the amount of each payment depending on the value of the work completed during the prior perlod of time. The Federal Procurement Regulations call thls a flxed-price contract with adjustable unlt prices. It Is most frequently used for rock slope englneerlng because often neither the exact anount of common or rock excavation, nor the amount of requ I red rock support ls known.

The types of work that can be speclfled as unlt quantltes are as fol lows:

> - mobllizatlon/demoblilzation
> - access road construct lon
> - cublc yards of sol l
> - cublc yards of rock
> - Ilnear feet of rock bolts
> -square feet of pre-shear face
> . scallngmanhours
> - equipment rental, standby and operatlng
> *standby tlme for hlghway openlngs when no work ls posslble
> - cublc yards of shotcrete

The speclf lcations should glve an estimate of the quant itles Involved so that the contractor knows the magnitude of the project. It should also be clear that the quantlites may be changed durlng the course of the work. Figure 14.1 shows a typlcalspeclflcation sheet for a unlt prlcestablilzation contract.

Thls type of contract would be used for slope stablilzation work where the full extent of the work requilred is usually only determlned as the work progresses. For example, the estlmated number of bolts may decrease If It Is declded that loose rock should be scaled down rather than bolted.

Lump Sum Contract

If the owner (government) knows exactly the quantitles of work to be accomplished, It wl I I advertlse a "Lump Sum" contract. The terms of this contract provide that the ownerwill pay to the contractor a specit led sum of money for the completion of a project conforming to the plans and speclflcations furnished by the englneer. It Is common practlce for the owner to pay to the contractor a portion of this money at specifled Intervals, such as monthly, with the amount of each payment depend Ing on the value of the work comp leted durlng the pr lor per lod of t Ime, or according to some other schedule.

Lump sum contracts can be used on routlne excavation projects where the volumes are clearly specifled by accurately surveyed cross-sectlons and the owner has confidence In stablilty of the deslgned slope angles. Controlled blasting on finalslopes is usually specifled ad the contract should state that the contractor pay for al I excavation outside the design I Ines. The lump sum bld by the contractor may Include the Insta I I at Ion of slope stablilzation measures such as rock bolts, or these may be bld on a unlt price basls if the quantltes cannot be defined until the excavation is made.

Lump sum contracts can al so be used on stablilzat lon work when the quantlies are well def Ined, e.g. the construction of a retalnIng wall or concrete buttress.

Fixed Price with Escalation Contract

A minor variation of the tixed-prlce contract used for contracts of long duration are advertlsed flxed-prlce contracts whescolation. An example would be for the owner to agree to pay for any Increases In fuel costs that the contractor must pay. This can al low for a lower bld price, thus a savings to the taxpayer, because the contractor Is free of the rlsk of ol I price Increases md does not need to add a margin to hls price.

IndefInIte Dellvery Type Contract

If the exact time of dellvery Is not known at the time of the contracting, the government can use several forms of what the Federal Procurement Regulations cal I Indef InIte del Ivery type contracts. These are sometlme called "open-ended" contracts or "day-rate" contracts and can be In force for up to a year to do such work as clearing ditches or scalling rock on a day-byday, or as-required basls. These contracts are sometlmes used to allow work to be done by smal I, local contractors and are sulted to small budgets where It Is not worthwhl le setting up another type of contract.

Cost-Plus-A-Fixed-Fee Contract

If for some reason, such as emergency, the government cannot advertlse, they may negot late any of the above type of contracts. Alternatively, they may award a cost-relmbursement type contract of several forms, the most common of which ls the cost-plus-a-flxed-fee contract. Under the terms of thls contract the owner agrees to reimburse the contractor for specifled costs, usually on-site costs, Incurred by the contractor In carrying out the work, plus an additional fee. The fee Is a prof It plus a management fee to relmburse the contractor for

STABILIZATION REQUIRED

1. Scale loose rock from slope to a height of about 80 ft . Only blocks of rock larger than $0.25 \mathrm{cu} . \mathrm{yd}$. should be removed. There are at least three loose blocks with volumes up to 6 cu.yd. Remove trees and apply weed killer to stumps.
2. Install $6 \times 14 \mathrm{ft}$. long rock bolts in loose block at east end at a height of about 30 ft. above track level. Other bolts to be installed as directed by the Engineer.

Estimated total bolt footage $=130 \mathrm{ft}$.
3. Excavate a 180 ft . Iong, ditch at toe of slope; some blasting required at west end. Approximate back line shown on photograph.

Figure 14. I : Typical specification sheet for slope stabilization work.
the costs incurred at his head office resulting from the construction of the project. Items of expense covered by the fee include, but are not limited to, salaries, rent, taxes, insurance, interest on money borrowed to finance the project, the cost of trips made by persons to the project, expediting the delivery of materials to the project, etc.

Emergency situations where cost-plus-fixed-fee contracts could be used would be where a rock fall has blocked the highway and men and equipment are needed immediately to clear the rock and stabilize the slope.

Cost-Plus Converted to Lump Sum
In some emergency situations, it may become apparent after work has started that the required remedial work can be clearly defined so that the contractor can make a f im bid on the total project. The previously negotiated cost-plus contract can then be converted to a lump sun payment to cover a l the required work. This provides the owner with protection against overruns which is not the case with cost-plus contracts.

In order to avoid delays in the start of emergency work because the owner and contractor cannot agree on the fee for the job, it is worthwhile making some prior arrangements with local contractors in the event of an emergency call-out. These arrange ments would include equipment availabilities, mobilization times and fee scales.

Guaranteed Maximum Cost

Just as a contractor approaches a l unp-sum agreement with many misgivings, so too will most owners contemplate any cost-plus arrangement. Indeed, many owners feel, perhaps not entirely unreasonably, that an unlimited cost-plus agreement destroys any real incentive to hold costs down and usually results in a large increase In the cost of construction. The issue can, of course, be debated, but the fact that this feeling is prevalent cannot be denied. To combat this threat, owners will often insist that the contractor agree to a guaranteed maximum price. Typically, this type of provision will fix a maximum amount, often referred to as an upset price. The contractor agrees that he is to be reimbursed by the owner for al lhe costs of the work up to a fixed amount, and the contractor further agrees that any cost of the work beyond that fixed amount will be his responsibility. The Federal Procurement Regulations callis a cost-plus-incentive-fee contract.

Shared-Savings Provisions

This type of agreement provides flexibility to cope with changed conditions, but also provides the owner with some protection against overruns by giving the contractor an incentive to control costs. It is, in one way, the reverse of the maximum price provision. Here, an amount is fixed by the agreement, often referred to as the "target" price. This target price is made up of the actual cost to the contractor for doing the job plus a variable fee for head office, related business expenses and profit. This fee varies according to whether the final cost is over or under the target est lmate cost. That is, if the cost i s greater than the target the fee i s reduced, and if
the cost Is less than the target the fee Is Increased. The factor by which the proflt Is varied Is a bid Item.
An example of a target prlce contract Is as follows:
Target estlmate $=\$ 550,000$
$=\$ 110,000$

Fee | Reduction In fee for overruns $=5 \%$ of overrun |
| ---: |
| Increase In fee for underrun $=20 \$$ of underrun |

Case a) If actual price Is $\$ 680,000$, then total cost to owner

 Is:| Actual cost | $=\$ 580,000$ |
| :--- | ---: |
| + Fee | $=5110,000$ |
| - Decrease In Fee $=(\$ 680,000-1550,000) \times 58$ | $=\frac{6,500}{\$ 783,500}$ |

Case b) If actual cost Is $\$ 500,000$, then the total cost to the owner Is:

Actual cost	$=1500,000$
+ Fee	$=\$ 110,000$
+ Increase In Fee $=(\$ 550,000=1500,000) \times 20 \%$	$=\frac{\$ 1,0,000}{\$ 670,000}$

The Federal Procurement Regulations call this a contract with performance Incentlves.

In some cases, a maximum and minimum fee can be specified so that there Is some control on the range of costs wh Ich may be Incurred. It Is also worthwhlle putting In an upset prlce clause to ensure that costs do not exceed thls Ilmit. otherwise, the contractor can exceed the target est I mate by a wide margin and although his fee Is minimal, he will still generate revenue whlle keepling hls men and equlpment busy and have llttle Incentive to finlsh the Job. In this respect, one should keep In mind that the target estlmate may bear little relationshlp to the actual cost.

Target estlmate contracts are sulted to projects where the exact scope of the work ls uncertaln. Thls makes It difflcult for the contractor to bld on a lump sum basis, while the owner wants to avold a cost-plus contract In which there wll be IIttle Incentive to control costs. An example of such a project would be excavation work where It Is necessary to halt work at frequent Intervals to allow traffic through. If the closure times cannot be precisely def l ned then the contractor cannot calculate hls costs accurately. An example of thls type of contract Is described In Chapter 12.

WRITINGSPECIFICATIONS

The basic rule of writing speciflcations is for the owner to tell the contractor what he wants, not how to do the work, whle protecting the Interest of the owner. Protect Ion of the owner's Interest requires judgement md experlence. An Important rule ls that each job is different and the type of contract selected, based on the factors discussed above, Inf luences the speclficatlons and method of payment. Standard or typical speclfications can be helpful In the early stages of con-
tract preparstlon, but shou Id never be used In a contract without careful revlew to determine appllcabillty. The cholce of an approprlate type of contract and the preparation of spec lf Icatlons will depend upon such factors as:

Slze of project
Degree of owner superv Is ion
Degree of detall In design
Project location, l.e. urban or rural
Geological conditions, l.e. strong, competent rock or weak weathered rock

For example, specIfications for blasting must ensure that an excavation Is produced that meets the design requirements as to slope angle and long-term stablilty, and that no blasting damage Is done to any surrounding structures. It must also al lou f lexibllity to ensure that the best method is used to sult changing rock conditions end excavation requirements. However, It should also be kept In mind that restrictive specifications may result In the blasting operation belng very expensive. It Is good practice to require trial blasts at the start of the work to determine the optImum technlque. Thus, specif Icatlons should provide general guldellnes and required results with the cholce of the actual methods belng left to the contractor. This method Is usually sotisfactory If the contractor Is experlenced. The englneer should stl I I have the authority to revlew the methods and results end request changes If necessary.

The fol lowing typical specificatlons cover many of the areas that need to be Included In contracts that Involve rock slope excavation.

TYPICALSPECIFICATIONS"

*These speciflcatlons are for lllustration purposes only; specIflc speclflcations should be prepared for each project to sult condltions. Dimenslons (e.g. rock bolt lengths and dlameters) should be determined from design calculations.

TYPE OF CONTRACT	
Fedcrdl Procure- ment Regulations Name	Common Name
Cost plus a fixed fee	cost plus a fixed fee

GOVERNMENT (OWNER
Advantages
Good ownery contractor
team work. Quick
start. Easy to make
changes.
\quad Disadvantages
Higher costs. Lacks
contractor initia-
tive. No budget
control.

Advantages	Disadvantages	
No risk on	Low fee and	
costs. Emergency work or Higher profit.	projects not well chance of	

Letter Contract	cost plus converted to lump
	sum

Immediate start. Easy
to administer after
conversion to 1 ump
sum.
Can negoti-
dte Job
dfter con-
ditions
known. In a
strong nego-
tiating pos-
ftion.

Emergency work
(flood damage. rock falls. bridge fdilure, etc.).
tiating pos ftion.

EXAMPLES

1.O LIMTTS OF EXCAVATION

All excavaton shall be to the lines and grades ehown in the drawings. Any excavation beyond these lines and grades, which is performed by the Contractor for any reason whatsoever, ehall be at the expense of the Contractor. Surveying during excavation, for excavation control purposes, shall be the responsibitity of the Contmctor.

All quantities shall be measured and claeeified in place to the lines chovn on the drawings. Surveying for the purpose of payment shall be the responsibility of the Engineer.
2.O CLASSIFICATION OF MATERIALS

Except as otherwise provided in these epecificatione, material will be claeeified for payment as follows.

2.1 Rock Eaxavation

For purposes of classification of excavation, rock ie defined ax sound and solid masses, layers, or ledges of mineral matter in place and of such hardneee and texture that:

1) It cannot be effectively looeened or broken down by ripping in a single pass with a late model tractormounted hydraulic ripper equipped with one digging point of standard manufacturer's deeign adequately eixed for use with, and propelled by a crawler-type tmctor with a net flywheel power mting between 210 and 240 horsepower. operating in low gear.
$o r$
2) In areae where it is impracticable to classify by use of the ripper descmibed above, rock excavation ie defined ae sound material of such hardness and texturs that it cannot be loosened or broken down by a 6 lb . drifting pick. The drifting pick shall be Class D, Pederal Specification CCC-H-506d with a handle not lees than 34 inches in length.

All boulders or detached pieces of solid rock more than 1 cubic yard in volume will be classified ae rock excavation.

2. 2 Common Excavation

Cormon excavation includes all matemal other than rock exeavation. All boulders or detached pieces of solid rock teee than 1 cubic yard in volume will beclassified as commonexcavation(328).

3.0 ROCK EXCAVATION SPECIFICATIONS

In order to excavate the site to the required elevations, rock blaeting will be neceeeary.

The stability of the final cut elopes and foundations will depend to eome degree upon the existing jointing cmd crack system in the rock, and will be influenced great $Z y$ by the procedures of blasting that are used. Consequently. the Contmctor shall
carefully control all blasting by limiting the sise and type of the charges in accordance with theee specifications, varying the sise and spacing of drill holes, using delays, and such other controls a8 maybe reasonably required by the circumstance 8 in order to preserve the rock strength beyond the required minimum lines and grades in the soundest possible conditions.

Trial blasts shall be conducted a8 required by the Engineer at the start of the work, and at other time8 when the rock and/or the dimensions of the blasts change, to determins the optimum drill hole layout, explosive load8 and delay sequences. The specifications below shall be used a8 a guideline in determining the optimum pwaedure.

3.1 Experience of Contractor

Theforeman who provides on-site supervision of the work desemibed in this Contract shall have a minimum of two years experience in controlled blasting. Before starting operation8 the Contractor shall submit to the Engineer a resumb of the qualifications and experience of the foreman.

3.2 Alterationsby Contractor

Not la88 than thr88 (3) day8 prior to commencing excavation in the specified area8, and at any time the Contractor proposes to alter his methods of excavation, he shall submit to the Engineer for review full detail8 of the drilling and blasting pattern8 and controls he proposes to use in the specified arsas. The Contractor ehall not commence excavation in the 88 arsas or change his method8 of ozcavation until his drilling and blasting patterns, contwle, and his method8 have been reviewed by the Engineer.

If, in the opinion of the Engineer, the method8 of ezcavation adopted by the Contractor are unsatisfactory in that they result in an excessive amount of excavation and/or rock damage beyond the minimum line8 and grades or that they fail to satisfy the requirement 8 specified elsewhers in theee specifications, then, notwithstanding the Engineer' 8 prior review of such methods, the Contractor shall adopt such revised methods, technique8 and procedures a8 are necessary to achieve the required results.

3.3 Ercavation Of Slopes

To ensure that final elopes are stable, controlled blasting ehall be used to minimise the damage to the rock behind the faces. The following specifications deseribe the geneml method of blasting to be used on final slopes. he optimwn procedure, which may vary at different location on the site, shall be determined fwm trial blasts.

The maximm bench height when excavating on the final slopes shall be (for bench height 8 see Chapter 111; this is to ensure control over drill hole direction 80 that the holes on the final $\boldsymbol{b l o p e s}$ are evenly spaced.

Controlled Blasting Terminology
These specifications, in part, provide for the use of final line holes, buffer holes, production holes, maximum charge8
and blasting delays to achieve the specified blasting control for the slopes.Explanation of tk888 terme are as follows:

3.3.1 Pinal Line Blasting

1) Blast holes and timing in detonation sequence ="Controlled Blasting" is the techrique of carefully drilling tke final tine of holss on the plans of the final cut slope required. Each hole of the final line is loaded with an explosive charge "decoupled" from the blast hole wall with a centering slecve.The hole8 are fired simultansously, and first or last in the delay sequence to create a crack along the plane of the final rock $\boldsymbol{b u r f a c e}$.

21 Alignment and depth of holes in the final line - The final line of holes shall be on tk8 line of the final face and the spacing shall be as uniform as possible, and the diameter of these holes shail not be greater than (for hole diameters 884 Chapter 11). The bottom8 Of final line holes shall not be positioned at a higher - 18vation than tk8 bottom8 of adjacent production blast holes. Thedepth of tk8 final line holes shall be limited to (for hole lengths 888 Chapter 11).
3) Explosives - The hole spacing and amount of explosive in the final line of holes may require adjusting, depending on surface quality and integrity of the exposed rook surface and condition encountered during the progress Of the work. Water resistant explosives may be required for some of the work.

3.3.2 Buffor Row

1) Buffer holes and charges - Tke tine of buffer holes shatt be parallei to tke final line of holss and shall be the same diameter as in the holes of the final tine. The amount of explosives per hole shall be less than the explosive used per production hole contained in the main pattern. he purpose of the 88 holes is to protect tke final face by mom uniformly distributing the $8 x$ plosive within tke rock adjacent to the face.

3.3.3 Production Holes

21 Hole pattern and loading - The main production blasting shall use (for hole diameters see Chapter 11) diameter holes laid out to detonate in a delay sequence employingtke omiteria of loading and maximm charge per detonation given in Maximum Charges and Delays, Section 3.3.4, following. Detonation shall be toward a free face.

3.3.4 Maximum Charges and Delays

1) Maximum charges - Vibmtione generated by detonation of charqes for both tke final line and main pattern blasting shall be oontrollbd by use of delays to minimize damage to the sumpounding rook. The Contractor shall advi88 tke Engineer in sufficisnt time prior to sack blast to provide tke Engineer with an opportunity to monitor tke vibrations from the blast if desired.

21 Design of delays - Delay sequencing for multiple shots may be accomplished through the uee of short period delay 8 of the type appropriate to the method of fusing adopted.

3.4 CONTROL OF FLYROCK

Precaution8 shall be taken to ensure that flyrock from the blasting operations does not reach the location8 designated on the drawings.

3.5 SCALING

The objective of scaling shall be to remove looee block8 of rock and to ensure that the new face is stable.

3.5.1 Method

Scaling shall be conducted under the supervision of the Engineer who shall determine the areas to be scaled, the scaling method to be employed, and shall inspect the new faces. Hand scaling shall be employed except where other means, such a8 hydraulic splitters or light blasting is approved by the Engineer. Scaling shall start at the top of the slope and work downands, to roadbed level. After scaling, the new face ehall be inspected by the Engineer to determine whether or not scaling is complets.

3.5.2 Blasting

When blasting is required, the force shall be sufficient to remove the block but not damage the surrounding rock. If a crack exists between the loose block and the slope, the explosive can be placed in this omck.

3.5.3 Drilling

If drilling is required, the hole 8 ehall be parallel, drilled in straight lines, and have the spacing equal to about 10 time 8 the hole diameter. They shall be loaded with sufficient exploeive to break the rock between the hole8 but not danage the new face. All blasting shall be conducted by an experienced powder man, with blasting patterns subject to review by the Engineer.

3.6 Ditching of Hook Slope8

The excavation of ditches along the toe of certain slopes is required to prevent falling rock from reaching the moadbed.
3.6.1 The area8 to be ditched ehall be specified by the Engineer.
3.6.2 Near vertical slopss close to the roadbed shall not be ditched where the Engineer determine8 that excessive rock excavation will result.
3.6.3 The dimensions of ditchee are specified on the drawings; care shall be taken to ensure that the excavation does not undercut the roadbed.
3.6.4 The ditch shalt havevertical sides and a horizontal base to ensure tkat rock8 fall vertically and do not bounce outwards towards the roadbed. If possible, a 6 inch thick layer of fine, broken rock, or sand, shall be left in the bottom of the ditah to absorb the impact of falling mock.
3.6.5 Trim b\&sting techniques shall be used such that permanent vertical slopes are produced and tkat damage to the wck behind the faae is minimised. Any excavation kyond the minimum lines epecified by the Enginesr, which is performed by the Contractor for any purpose whatsoever, shall be at the expense of the Contractor, unless it has received the prior approval of the Engineer. The Contmctor is mutioned to ensure that the final line drill holes conform with the planned excavation limits.
3.6.6 The holes for the trim line shall be parallel to each other and to the side of the ditch. Hole spacing shall be about 10 times the hole diameter.
3.6.7 The explosive to ad in the back line shall be sufficient to break the wak along the minimum excavation line and shall be equivalent to about (for explosive load8 see Chapter 11). The trim line shall be detonated on a singie delay.
3.6.8 The broken wak ekall be removed from the ditch witk loading equipment working in the excavation, pushing the mats$\mathcal{E} l$ to one point for disposal. Tkie is to ensure $t k a t$ the toe of the cut slope is a 8 near vertical as possible and to minimise damage to the pavement from loading equipment. Cam shall also be exercised not to undermine tke roadbed.
3.6.9 The ditah shall be graded ouch tkat drainage will occur and water does not collect at low points.
3.6.10 At the completion of excavation, the cut slope8 shall be inspected by the Engineer and rock bolts and dowels shall be installed a u required to stabilise potentially wotable rock.

4.0 SUPPORT OF ROCK SLOPES

4.1 Dowels

Natuml fractures in the rock slope may produce potentially unstable blocks of wak that must be supported. Locatias on the elope tkat require support will be detemmined by the Engineer. Dowels consisting of reinforcing steel (for length and diameter see Chapter 12) fully grouted into holes drilled into the face. The grout shall be Type I Portland cement. Plates and nuts on the face of ths slope shall not be required. The dowel s shall be inetalled during exoavation from the current working bench.

4.2 Rook Bolts

The funGion Of rock bolt8 is to exert permanent normal force across potential failure planes. This timk. 7888 the frictional force and mesists sliding.
4.2.1 All rock bolts to be installed in this Work shall be products of a monufacturer megularly engaged in the manufacture of rock bolts. Bolts shall be fabrioated from deformed bars and tensionable. Permissable type8 are:

1) A mechanically-anchored, hollow, groutable bolt.
2) A 2-stage-setting resin-embeaded boit.
3) A plastic-covered bolt (approved by the Engineer) with grout anchor.
4.2.2 The length of each bolt to be installed shall be determined from masaunaments to be made at the time of stabilization. Unless opecified herein, the length of each bolt in the rock shal 2 be appromimately twice the thickness of the slab or block to be stabilised.
4.2.3 Rock botts shalt be fully corrosion-protected. All part8 of the bolt, bearing plate, and nut on the surface of the cut, shall either be encased in ehotcrete or painted with a corrosion protective print.
4.2.4 The cement grout used for rock bolt types (1) or (3) deseribed above shall be a non-ehrink type grout and achieve a strength of 3,000 pounds per square inch in not more than 4 days. Fondu cement shall not be used. Resin may be epoxy or polyeater in bulk or cartrige form, but shall be a make approved by the Enginaer.
4.2.5 When the and of the bott is anchored in place (either machanically or chemically), each bott shall be tensioned to (for required tension ose Chapter 7) with a hollow-ram hydraulic jack. Load/estension measurements shall be made during tensioning. If the Load cannot be maintained for 10 minutes. or the axtension (after shell tightening) exceeds the elastic strain of the bolt by 20 percent, the bolt shall be replaced or a further bolt installed in a separate hole.
4.2.6 After tensioning and approval by the Engineer, the full Length of the bolt shall then be grouted with non-shrink grout to ensure that teneion is maintained permanently along the length of the boit. One or nvre representative rock boits shall be pulltested to failure if $s 0$ requested by the Engineer.
4.2.7 The hydraulic jack and pressure gauge used for teneioning shall be calibrated by a registered calibration agency, a marinum of 1 month prior to the tensioning operation, and a copy of the mibmtion certificate shall be shown to the Engineer $\mathcal{E} f$ ore tensioning begins.
4.2.8 A bearing plate, a hardened flat washer and a nut shall be used to transfar the tension in the bolt to the rock. The plate shall be in uniform contact with the rock surface. If the rook face is not perpendicular to the axis of the bolt, or the rook under the baaring plate is not sound, a bearing pad approved by the Engineer shall be constructed so that the bolt is not bent when the tension is applied. Bevelled washers may also be usad to level a bearing plats. Where the rock surface is generally weak or weathered, extra Large bearing plates (such as 8 inch square) shall be used.
4.2.s The installation of the corrosion protection, the installation method and the teneioning, should all be carried out according to the marufacturer's specifications.

4.3 Shotarata

The function8 of ehotcmta ara to eliminate eroaion effects, prevant blocks on the face from beaonting Zooee, ond to hold in place blocks that can slide on adversely oriented joint or fault surfaces.

4.3.1 Pepsonnel

The foreman shall have good personal experience, including not teas than two years as a ahotcrate noszleman. The noszleman ahatt have aarved at least six months appmnticaahip a similar applicationa and shatl be able to demonatrate by teeting his ability to perform satisfactorily hie duties and to gun shotcrate of the required quality.

4.3.2 Matemials

Materials uead ahatt be a pra-mix ehotcrete product manufacturad by a monufacturer regularly engaged in the manufacture of aoncrata produate. Class " A " aggregate shall ba used which shall conform to ACI Standands for fine aggregate. The water ueed for mixing ond curing shall be clean and free from substances whiah might be deleterious or corrosive to concrete or stesi, and shall ba fumished by the Contractor. The Contractor, if ao mqueetad by the Engineer, shalt aubmit reports of taete nude by a competent laboratory, on samples of the water which ha propoeae to uea or ie using.

Admixturas such as accelerators, air antraining admixtures or retarders, if ueed, shall be approved by the Engineer.

4.3.3 Strength

Tha ehotcrata shall achieve a minimum 28-day strength of 3,500 pounds par square inch.

Tha responsibility for the design of all mixes for the mortar and for the quality of the mortar placed in the Work shall mat with the Contmator.

No coment/sand mixture ahatt be uaad if allowed to etund for 45 minutes or more before uee.

4.3.4 EquipmentRequiraments

The mixing equipment shall be capable of thoroughly mixing tha epeaified materials in auffiaiant quantity to tmintain continuous placing.

In order to aneura that the coment/sand premix will f Zow at a uniform mite (without slugs) through the main hopper, delivery hose, and dry-mix noszie to form uniform ahotarata (free of dry pockets) on tha rook surface, predampening (also referred to as premoisturising) equipment shali be used to bring the moisture content from eseentially sero, in sealed transporting bags, to within the mnga of thme peroent to six percent. Prodampening shall be carmied out prior to flow into the main hopper, and imediately after flow out of the bags.

The air compressor ahatt be capable of supplying clean air adequata for nuintaining sufficient nossie velocity throughout alt
phases of the work, as well as for the simultaneous operation of a blow pipe for clearing cuay rebound.

4.3.5 Quality Control

In order to satisfy himeelf as to the quality of the mortar being placed in the Work, the Engineer will inspect all aspects of the monufacture and placement of mortar and carry out such tests on the nvrtar and its constituent materials as he may deem necessary. The Contractor shall coopemte fully and provide all necessary assistance to enable the Engineer to carry out such inspections and tests.

Test cylinders of nvrtar shall be shot with the same air pressure, noszle tip, and hydmtion a. 8 the nvrtar being placed at the point in the Work where the cylinder8 are taken.

4.3.6 Surface Preparation

Prior to the application of mortar, all mud, loose, shattered and rebound matevial, and all other objectionable matter ehall be removed from the surface against which the mortar is to be placed. Sand blasting procedure 8 ehall be ueed to effect the necessary cleaning of the surface against which the mortar ie to be placed, a8 and where directed by the Engineer. The surfaae shall be washed clean immediately prior to shotereting, using alternate jets of air and water. Care ehall be taken that key block8 are not removed.

4.3.7 Mash Reinforcement

Areas that are to be covered with mesh reinforcement ehall be determined by the Engineer. The mesh shall coneiet of welded wire mssh 4 inches by 4 inchee opening sise which ehall be securely attached to the rock surface with pin8 grouted into hots8 not less than 12 inches deep at a minimum spacing of 5 ft. The exposed portion of the pins shall be threaded 80 that a nut and washer don be used to place the mesh in contact with the eurface. The location of mesh pin8 shall be approved by the Engineer. At all oplices the wire fabric shall be Zapped a minimum of 8 inches.

4.3.8 Application

he area of each rook face to be shotcreted ehall be detemmined by the Engineer. On competent rock elopes where only eracks are to be covered, the shoterets shall extend at least 12 inchee on either side of the crack. A minimwn thicknsss of 1-1/2 inches and on avemge thickness of three inchee shall be applied, and reinforcing mesh shall be completelyencased. The ehotarete shall be applied from the hottom of the slope upward8 80 that rebound does not accumulate on rock that ha8 still to be covered. Surface8 to be shot shall be damp but have no free Standing titer. No ehotarete shall be placed on dry, dusty or frosty surfaces. The nossle shall be held at a distance and at an angle fwm the perpendicular to the working face 80 that rebound material will be minimal and compaction will be maximal; this distance is usually between two and five feet.

A nosslemon's helper equipped with an air blow-out jet shall attend the nossleman, at all times during the placement of mortar, to keep the working area free from mbound.

Mortar ehalt emerge from the noxxle in a steady, winterrupted flow. When for any reason the flow becomes intermittent, the noxxlo ehall be diverted from the work until steady flow resumes.

Where a laybr of shotcrete is to be covered by a succesding layer, it shall first be allowed to take it 8 initial est. Then all taitence, looee matemial and rebound ehall be removed by brooming. In addition, the surface should be thoroughly sounded with a hammer for drumy areae rseutting from rebound pockets or lack of bond. Driomy areas, age, or other defacts shall be carefully cut out and replaced with a succeeding layer.

Rebound shall not be worked back into the construction by the nosslemon; if it does not fall clear of the work it must be removed. Nor shall the rebound be ealvaged and included in Zater batches because of the danger of aontantimtion.

Construction joints shall be tapered over a minimem distance of 12 inches to a thin edge, and the surface of such jointe ehall be thoroughly wetted before any adjacent action of mortar is placed. No equare joints shall be permitted.

Shooting shallbetemporarilysuspended if:

- High wind prevents the nozeleman from proper application of the matemial.
- The temperature ix below $35^{\circ} \mathrm{P}$ and the work oannot be protected.
- Rain occurs which my waxh cement out of tho freshly plaaed material and oausesloughs in the work.

4.3.9 Drainage

Dmimge holes shall be provided so that water preeeuree do not build up behind the shoterete. The drains shall be produced by driving wooden plugs into cracks designated by the Engineer prior to ehotcreting. After the shotcreto hae obtained ite initial eet, the plugs shall be removed.

4.3.10 curing

Either the shoterste surface ehall be kept continuously wet for at teaet xeven $\mathcal{E y e}$ or membmane curing shall be used. The air in contact with ehotarete surfaces shall be maintained at temperatume above freexing for a minimum of eavendays.

4.3.11 Testing

At each eite and for each new batch of ehotamte mall, unreinforcedtestpanelsat least one foot equare and three inches thick shall be gunned, if required by the Engineer. These pansls will be inspected by the Engineer and periodialty oored for testing purposes.

Chapter 14 : References

[^6]
Appendix1: Analysis of laboratory strength test data

Introduction

The choice of the shear strength of a failure surface or zone is a critical part of any slope stability analysis. Consequently, the analysis of laboratory strength test data is an important component of any slope design.

This appendix presents a number of simple statistical regression analyses which can be used to determine the angle of friction and the cohesive strength or the constants which define the non-linear failure characteristics of rock or soil. These analyses are presented in a form which is designed to facilitate programing on a programable calculator or computer.

Determination of the angle of friction and cohesive strength for a Mohr-Coulomb failure criterion

The tlohr-Coulomb failure criterion may be expressed in the following forms :

$$
\begin{align*}
& \tau=c+o \tan \phi \tag{1}\\
& \tau_{m}=c \cdot \cos \phi+\sigma_{m} \cdot \sin \phi \\
& \sigma_{1}=\frac{2 c \cdot \cos \phi}{1-\sin \phi}+\sigma_{3} \frac{1+\sin \phi}{1-\sin \phi}
\end{align*}
$$

These equations may be expressed in the general form :

$$
\begin{equation*}
y=a+b x \tag{4}
\end{equation*}
$$

The constants a and b and the coefficient of determination $\mathbf{r}^{\mathbf{2}} \mathrm{can}$ be determined by linear regression analysis as follows:

$$
\begin{aligned}
& b-\frac{\Sigma x y-\Sigma x \Sigma y / n}{\&-(\Sigma x)^{2} / n} \\
& a=(\Sigma y / n-\mathrm{b} \cdot \Sigma x / n)
\end{aligned}
$$

$$
r^{2}=\frac{(\Sigma x y-\Sigma x \Sigma y / n)^{2}}{\left(\Sigma x^{2}-(\Sigma x)^{2} / n\right)\left(\Sigma y^{2}-(\Sigma y)^{2} / n\right)} \quad 7
$$

where x, y are successive data pairs and n is the total number of such pairs.

The angle of friction ${ }^{1}$ and the cohesive strength c are calculated as follows :
a. For input 1 - т a n d y - o

```
\(\phi=\) Arctan b
\(c=a\)
b. For input \(x=\tau_{m}\) and \(y=\sigma_{m}\)
\[
\phi=\operatorname{Arcsin} b
\]
\(c=a / \cos \phi\)
c. For input \(x=\sigma_{1}\) and \(y=\sigma_{3}\)
\(\ddagger=\operatorname{Arcsin} \frac{b-l}{b+1}\)
\[
c=\frac{a .(1-\sin \phi)}{2 \cos \phi}
\]

Determination of material constants defining non-linear failure criterion

The non-linear failure criterion defined by equation 29:
\[
\begin{equation*}
\sigma_{1}=\sigma_{3}+\sqrt{m \sigma_{c} \sigma_{3}+s \sigma_{c}}{ }^{2} \tag{29}
\end{equation*}
\]
may be rewritten as :
\[
y=m \sigma_{c} \cdot x+s \sigma_{c}^{2}
\]
where \(y=\left(\sigma_{1}=\sigma_{3}\right)^{2}\) and \(x=\sigma_{3}\)
Intact rock
For intact rock, \(s=1\) and the uniaxial compressive strength \(\sigma_{c}\) and the material constant mare given by :
\[
\begin{align*}
& \sigma_{c}^{2}=\frac{\Sigma y}{n}-\left[\frac{\Sigma x y-\frac{\Sigma x \Sigma y}{n}}{\Sigma x^{2}-\frac{(\Sigma x)^{2}}{n}}\right] \frac{\Sigma_{x}}{n}  \tag{15}\\
& m=\frac{1}{\sigma_{c}}\left[\frac{\Sigma x y-\frac{\Sigma x \Sigma y}{n}}{\Sigma x^{2}-\frac{(\Sigma x)^{2}}{n}}\right] \tag{16}
\end{align*}
\]

The coefficient of determination \(r^{\mathbf{2}}\) is determined from equation 7 above. The closer the value of \(r^{2}\) is to 1.00 , the better the fit of the empirical equation to the triaxialtest data.

\section*{Broken or heavily jointed rock}

For a broken or heavily jointed rock mass, the strength of the intact pieces of rock is determined from the analysis presented on the previous page. The value of \(m\) for the broken or heavily jointed rock is found from equation 16 and the value of the constant \(s\) is given by :
\[
\begin{equation*}
s=\frac{1}{\sigma_{c}^{2}}\left[\frac{\Sigma y}{n}-m_{\sigma} \frac{\Sigma x}{n}\right] \tag{17}
\end{equation*}
\]

The coefficient of determination \(\mathbf{r}^{\mathbf{2}}\) is found from equation 7.
When the value of the constants is very close to zero, equation 17 will sometimes give a small negative value. In such cases, put \(s=0\) and calculate \(m\) as follows :
\[
\begin{equation*}
m=\frac{\Sigma y}{\sigma_{c} \Sigma x} \tag{18}
\end{equation*}
\]

Vhen equation 18 is used, the coefficient of determination \(r^{2}\) cannot be calculated from equation 7.

Mohr envelope
The relationships between the shear strength \(\tau\) and the normal stress \(\sigma\) and the principal stresses \(\sigma_{1}\) and \(\sigma_{3}\) are defined by the fol lowing equations : :
\[
\begin{align*}
& 0=\sigma_{3}+\frac{\tau_{m}^{2}}{\tau_{m}+m \sigma_{c} / \varepsilon}  \tag{19}\\
& \tau=\left(0-\sigma_{3}\right) \sqrt{1+m \sigma_{c} / 4 \tau_{m}} \tag{20}
\end{align*}
\]

By substituting successive pairs of \(\sigma_{1}\) and \(\sigma_{3}\) values into equations 19 and 20, a complete Mohr envelope can be generated. While this process is convenient for some applications, it is not convenient in slope stability calculations in which the shear strength is required for specified normal stress values. A more useful expression for the Mohr envelope is given by equation 30 on page 107 :
\[
\begin{equation*}
\tau=A \sigma_{c}\left(\sigma / \sigma_{c}-T\right)^{B} \tag{30}
\end{equation*}
\]
where \(A\) and \(B\) are empirical constants which are determined as follows :

Rewriting equation \(3 \emptyset\) :
\[
\begin{equation*}
y=a x+b \tag{31}
\end{equation*}
\]
```

where y = log}\tau/\mp@subsup{\sigma}{c}{
x=log}(\sigma/\mp@subsup{\sigma}{c}{c}-T
a - B
b}=\operatorname{log}
T=\frac{1}{2}(m=\sqrt{}{\mp@subsup{m}{}{2}+45})

```

\footnotetext{
* BALMER, G. A general analytical solution for Mohr's envelope. Amer. Soo. Tasting Nateriale, Vol. 52, 1952, pages 1260-1271.
}

The values of the constants \(A\) and \(B\) are given by :
\[
\begin{aligned}
B & =\frac{\Sigma x-\frac{\sum x y}{\Sigma x^{2}-\frac{(\Sigma \pi)^{2}}{n}}}{\log A}=\frac{\Sigma y}{n}-B \frac{\Sigma x}{n}
\end{aligned}
\]

Values of \(A\) and \(B\) are calculated for values of \(\sigma\) and \(r\) given by substituting the following values of \(\sigma_{3}\) into equations 29, 19 and 20 :
\[
\begin{aligned}
& \sigma_{3 m}, \sigma_{3 m / 2}, \sigma_{3 m / 4}, \sigma_{3 m / 8}, \sigma_{3 m / 16}, \sigma_{3 m / 32}, \sigma_{3 m / 64}, \sigma_{3 m / 128}, \\
& \sigma_{3 m / 256}, T / 4, T / 2,3 T / 4 \text { and } T
\end{aligned}
\]
where \(\sigma_{3}\) is the maximum value of \(\sigma_{3}\) for the data set being analysed and \(T=\frac{1}{2}\left(m-\sqrt{m^{2}+4 s}\right)\).

The instantaneous friction angle \(\phi_{i}\) and the instantaneous cohesive strength \(c_{i}\) for a given value of the normal stress o are given by :
\[
\begin{align*}
& \phi_{i}=\operatorname{Arctan} A B\left(\sigma / \sigma_{c}=T\right)^{B-I}  \tag{34}\\
& c_{i}=T-a \operatorname{Tan} \phi_{i} \tag{35}
\end{align*}
\]

Practical example of non-linear analysis
The following set of data was obtained from a series of triaxial tests on intact samples of andesite :
\begin{tabular}{lcrrrr}
\(\sigma_{1}(\mathrm{MPa})\) & 269.0 & 206.7 & 503.5 & 586.5 & 683.3 \\
\(\sigma_{3}(\mathrm{MPa})\) & 0 & 6.9 & 27.6 & 31.0 & 69.0
\end{tabular}

Analysis of the data, using \(\sigma_{3 m}=69 \mathrm{MPa}\), gave
\(\sigma_{c}=265.5 \mathrm{MPa}, \quad m=18.84, \quad s=1 . r^{2}=0.85, A=1.115\) and
\(B=0.698\).
Carefully drilled \(154 m m\) diameter cores of heavily jointed andesite were tested triaxially and gave the following set of data :
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(\sigma_{1}(\mathrm{MPa})\) & 1.24 & 6.07 & 8.96 & 12.07 & 12.82 & 19.31 & 20.00 \\
\hline \multirow[t]{3}{*}{\(\sigma_{3}\) (MPa)} & 0 & 0.35 & 0.69 & 1.24 & 1.38 & 3.45 & 3.45 \\
\hline & & \multicolumn{6}{|l|}{Analysis of these data, using \(\sigma_{3 m}=3.45 \mathrm{MPa}\), gave} \\
\hline & & \(m=\) & 7, s & 0002, & - 0.00 & 2, \(\mathrm{r}^{\mathbf{2}}\) & 99, A \\
\hline
\end{tabular}

\title{
Appendix 2 : Wedge solution for rapid computation
}

\section*{Introduction}

The solution of the wedge problem presented in reference 201 was designed for teaching purposes rather than for convenience of calculation. In this appendix, two solutions designed for maximum speed and efficiency of calculation are given. These solutions are :
1. A short solution for a wedge with a horizontal slope crest and with no tension crack. Each plane may haveadifferent friction angle and cohesive strength and the influence of water pressure on each plane is included in the solution. The influence of an external force is not included in this solution.
2. A comprehensive solution which included the effects of a superimposed load. a tension crack and an external force such as that applied by a tensloned cable.

The short solution is suitable for programming on a pocket calculator such as a Hewlett-Packard 67 or a Texas Instruments SR52. It can also be used with a non-programmable calculator such as a Hewlett-Packard 21 and a typical problem would require about 30 minutes of calculation on such a machine.

The comprehensive solution is 4 to 5 times longer than the short solution and would normally be programmed on a desk top calculator or in a computer.

SHORT SOLUTION
Scope of solution

The solution presented is for the computation of the factor of safety for translational slip of a tetrahedral wedge formed in a rock slope by two intersecting discontinuities, the slope face and the upper ground surface. It does not take account of rotational slip or toppling, nor does it include a consideration of those cases in which more than two intersecting discontinuities isolate tetrahedral or tapered wedges of rock. In other words, the influence of a tension crack is not considered in this solution.

The solution allows for different strength parameters and water pressures on the two planes of weakness. It is assumed that the slope crest is horizontal, ie the upper ground surface ls either horizontal or dips in the same direction as the slope face or at \(180^{\circ}\) to this direction.

When a pair of discontinuities are selected at random from a set of field data, it is not known whether
a) the planes could form a wedge (the line of Intersection may plunge too steeply to daylight in the slope face or lt may be too flat to intersect the upper ground surface).


Plane 1 overlies plane 2

b) one of the planes overlies the other (this affects the calculation of the normal reactions on the planes)
c) one of the planes lies to the right or the left of the other plane when viewed from the bottom of the slope.

In order to resolve these uncertainties, the solution has been derived in such a way that either of the planes may be labelled 1 (or 2) and allowance has been made for one plane overlying the other. In addition, a check on whether the two planes do form a wedge is included in the solution at an early stage. Depending upon the geometry of the wedge and the magnitude of the water pressure acting on each plane, contact may be lost on either plane and this contingency is provided for in the solution.

\section*{Notation}

The geometry of the problem is illustrated in the margin sketch. The discontinuities are denoted by 1 and 2. the upper ground surface by 3 and the slope face by 4 . The data required for the solution of the problem are the unit weight of the rock \(\gamma\), the height \(H\) of the crest of the slope above the intersection 0 , the dip \(\psi\) and dip direction a of each plane, the cohesion \(c\) and the friction angle \(\phi\) for planes 1 and 2 and the average water pressure \(u\) on each of the planes 1 and \(2 \%\). If the slope face overhangs the toe of the slope, the index \(\eta\) is assigned the value of -1 ; if the slope does not overhang, \(\eta=+1\).

Other terms used in the solution are:

. If it is assumed that the discontinuities are completely filled with water and that the water pressure varies from zero at the free faces at a maximum at some point on the line of intersection, then \(u_{1}=u_{2}=\gamma_{w} H_{w} / 6 w h e r e H_{w}\) is the overall height of the wedge.

\section*{A2-3}

b) If \(n_{2}<\) Oand \(m_{1}>0\), there is contact on plane 1
only and
\(F=\frac{m_{1} \cdot \operatorname{Tan} \phi_{1}+|\rho| c_{1}}{\left\{Z^{2}\left(1-a_{z}{ }^{2}\right)+k u_{2}{ }^{2}+2\left(r a_{z}-b_{z}\right) Z u_{2}\right)^{\frac{1}{2}}}\)
cl If \(n_{1}<0\) and \(m_{2}>0\), there is contact on plane 2 only and
\[
F=\frac{m_{2} \cdot \operatorname{Tan\phi _{2}}+c_{2}}{\left\{z^{2} b_{y}^{2}+k p^{2} u_{1}^{2}+2\left(r b_{z}-a_{z}\right) p i u_{1}\right\}^{\frac{1}{2}}}
\]
d) If \(m_{1}<0\) and \(m_{2}<0\), contact is lost on both planes and the wedge floats as a result of water pressure acting on planes 1 and 2. In this case, the factor of safety falls to zero.

Example
Calculate the factor of safety against wedge failure of a slope for which the following data applies :
\begin{tabular}{ccccc} 
Plane & 1 & 2 & 3 & 4 \\
\(\psi^{0}\) & 47 & 70 & 10 & 65 \\
\(\alpha^{0}\) & 052 & 018 & 045 & 045 \\
& \(Y=25 \mathrm{kN} / \mathrm{m}^{3}, H=20 \mathrm{~m}, c_{1}=25 \mathrm{kN} / \mathrm{m}^{2}, c_{2}=0\). \\
& \\
& \(=30^{\circ}, \phi_{2}=35^{\circ}, u_{1}=u_{2}=30 \mathrm{kN} / \mathrm{m}^{2}, \eta=+1\)
\end{tabular}
1. \(\left(a_{X}, a_{y}, a_{z}\right)=(0.40897,0.60632 .0 .68200)\)
2. \(\left(f_{x}, f_{y}, f_{z}\right)=(0.41146,0.80753\). 0.42262)
3. \(b_{y}=0.93969\)
4. \(b_{2}=0.34202\)
5. \(i=0.38431\)
6. \(g_{2}=-0.08078\)
7. \(q=-0.12981\)
8. \(" q / i<0 ; n\left(f_{z}-q / i\right) \quad \operatorname{Tan} \psi_{3}-\sqrt{1-f_{z}^{2}}<0\).

A wedge is formed. continue calculation sequence.
9. \(r=0.80301\)
10. \(k=\emptyset .35517\)
11. \(I=265.969\)
12. \(p=4.78639\)
13. \(n_{1}=161.456\)
14. \(n_{2}=-183.988\)
15. \(m_{1}=13.7089\)
16. \(\mathbf{m}_{\mathbf{2}}=-54.3389\)

```

 only ;
 c) gives F = 0.626 and hence the slope is unstable.
    ```
Note that water pressure acting on the planes has a signi-
ficant influence upon the solution to this problem. If
\(u_{1}=u_{2}=0, F=1.154\).

\section*{COMPREHENSIVE SOLUTION}

\section*{Scope of solution}

As in the previous solution, this solution is for computation of the factor of safety for translational slip of a tetrahedral wedge formed in a rock slope by two intersecting discontinuities, the slope face and the upper ground surface. In this case, the influence of a tension crack is included in the solution. The solution does not take account of rotational slip or toppling.

The solution allows for different strength parameters and water pressures on the two planes of weakness and for water pressure in the tension crack. There is no restriction on the inclination of the crest of the slope. The influence of an external load \(E\) and a cable tension \(T\) are included in the analysis and supplementary sections are provided for the examination of the minimum factor of safety for a given external load (eg a blast acceleration acting in a known direction ) and for minimiring the cable force required for a given factor of safety.

Part of the input data is concerned wlth the average values of the water pressure on the failure planes ( \(u_{1}\) and \(u_{2}\) ) and on the tension crack ( \(u_{5}\) ). These may be estimated from field data or by using some form of analysis. In the absence of precise information on the water bearing fissures, one cannot hope to make accurate predictions but two simple methods for obtaining approximate estimates were suggested in Appendix 1 of this book. In both methods it is assumed that extreme conditions of very heavy rainfall occur, and that in consequence the fissures are completely full of water. Again, in both methods, It is assumed that the pressure varies from zero at the free faces to a maximum value at some point on the line of intersection of the two failure planes. The first method treats the case where no tension crack exists and gives the result \(u_{2}=u_{2}=\gamma_{1} /{ }^{1} / 6\), where \(H\) is the total height of the wedge. The second method Wllows for the presence of a tension crack and gives \(u_{1}=u_{2}=u_{5}=\gamma_{w} H_{5 w} / 3\), where \(H_{5 w}\) is the depth of the bottom vertex of the tension crack below the upper ground surface.

As in the short solution, allowance is made for the following :
a) interchange of planes 1 and 2
b) the possibility of one of the planes overlying the other
c) the situation where the crest overhangs the base of the slope (in which case \(\eta=-1\) )
d) the possibility of contact being lost on either plane.


In addition to detecting whether or not a wedge can form, the solution also examines how the tension crack intersects the other planes and only accepts those cases where the tension crack truncates the wedge in the manner shown in the margin sketch.

\section*{Motation}

The geometry of the problem is illustrated in the margin sketch. The failure surfaces are denoted by 1 and 2 , the upper ground surface by 3 , the slope face by 4 and the tension crack by 5. The following input data are required for the solution :
\begin{tabular}{|c|c|}
\hline \(\psi, ~ a\) & dip and dip direction of plane or plunge and trend of force \\
\hline \(\mathrm{H}_{1}\) & - slope height referred to plane 1 \\
\hline L & distance of tension crack from crest, measured along the trace of plane 1 \\
\hline U & = average water pressure on face of wedge \\
\hline c & = cohesive strength of each failure plane \\
\hline \(\phi\) & = angle of friction of each failure plane \\
\hline Y & - unit weight of rock \\
\hline \(Y_{w}\) & = unit weight of water \\
\hline T & - cable or bolt tension \\
\hline E & - external load \\
\hline n & \begin{tabular}{l}
=-1 if slope is overhanging and \\
+1 if slope does not overhang
\end{tabular} \\
\hline Other & terms used in the solution are \\
\hline F & = factor of safety against sliding along the line of intersection or on plane 1 or plane 2 \\
\hline A & - area of face of wedge \\
\hline W & - weight of wedge \\
\hline v & - water thrust on tension crack face \\
\hline \(\mathrm{Na}_{3}\) & * total normal force on plane 1 \\
\hline S & = shear force on plane \(1 \quad\)\begin{tabular}{l} 
when contact is \\
maintained on
\end{tabular} \\
\hline Qa & - shear resistance on plane \(1 \quad\{\) plane 1 only \\
\hline \(\mathrm{F}_{1}\) & = factor of safety \\
\hline \(\mathrm{N}_{\mathrm{b}}\) & = total normal force on plane 2 when contact is \\
\hline \(S_{b}\) &  \\
\hline \(Q_{b}\) & - shear resistance on plane \(2 \quad\) plane 2 only \\
\hline \(F_{2}\) & = factor of safety \\
\hline \(\mathrm{N}_{1}, \mathrm{~N}_{2}\) & - effective normal reactions \\
\hline S & -total shear force on 1,2 \(2 \quad \begin{aligned} & \text { when contact is } \\ & \text { maintained on }\end{aligned}\) \\
\hline Q & - total shear resistance on 1.2 both planes 1 \\
\hline \(F_{3}\) & - factor of safety \(\quad\) and 2 \\
\hline
\end{tabular}

\section*{A2-7}

b. Components of vectors in the direction of the lines ofintersection of various planes.
\(\left(g_{x}, g_{y}, g_{z}\right)=\left(f_{y} a_{z}-f_{z} a_{y}\right),\left(f_{z} a_{x}-f_{x} a_{z}\right),\left(f_{x} a_{y}-f_{y} a_{x}\right) \quad 8\)

\[
\left(g_{5 x}, g_{5 y}, g_{5 z}\right)=\left(f_{5 y} a_{z}-f_{5 z} a_{y}\right),\left(f_{5 z}{ }^{a_{x}}-f_{5 x} a_{z}\right),\left(f_{5 x} a_{y}-f_{5 y} a_{x}\right) g
\]

\[
\left(i_{x}, i_{y}, i_{z}\right)=\left(b_{y} a_{z}-b_{z} a_{y}\right),\left(b_{z} a_{x}-b_{x} a_{z}\right),\left(b_{x} a_{y}=b_{y} a_{x}\right) \quad 10
\]

\[
\left(j_{x}, j_{y}, j_{z}\right)=\left(f_{y} d_{z}=f_{z} d_{y}\right),\left(f_{z} d_{x}=f_{x} d_{z}\right),\left(f_{x} d_{y}-f_{y} d_{x}\right)
\]

\[
\left(j_{5 x}, j_{5 y}, j_{5 z}\right)=\left(f_{5 y} d_{z}-f_{5 z} d_{y}\right),\left(f_{5 z} d_{x}-f_{5 x} d_{z}\right),\left(f_{5 x} d_{y}-f_{5 y} d_{x}\right) 12
\]

\[
\left(k_{x}, k_{y}, k_{z}\right)=\left(i_{y} b_{z}-i_{z} b_{y}\right),\left(i_{z} b_{x}-i_{x} b_{z}\right),\left(i_{x} b_{y}-i_{y} b_{x}\right) 13
\]

\[
\left(i_{x}, i_{y}, i_{z}\right)=\left(a_{y} i_{z}-a_{z} i_{y}\right),\left(a_{z} i_{x}-a_{x} i_{z}\right),\left(a_{x} i_{y}-a_{y} i_{x}\right) 14
\]
c. Numbers proportional to cosines of various angles
\(m=9 x d_{x}+9 y d_{y}+9_{2} d_{z}\) ..... 15
\(m_{5}=9_{5 x} d_{x}+95 y d_{y}+95 z d_{z}\) ..... 16
\(n=b_{x} j_{x}+b_{y} j_{y}+\quad b_{z} j_{z}\) ..... 17
\(n_{5}=b_{x} j_{5 x}+\quad b_{y} j_{5 y}+\quad b_{z} j_{5 z}\) ..... 18
\(p=i_{x} d_{x}+i_{y} d_{y}+i_{z} d_{z}\) ..... 19
\(q=b_{x} g_{x}+b_{y} g_{y}+b_{2} g_{z}\) ..... 20
\(q_{5}=b_{x} g_{5 x}+b_{y} g_{5 y}+b_{z} g_{5 z}\) ..... 21
\(r=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}\) ..... 22
\(s=a_{x} t_{x}+a_{y} t_{y}+a_{z} t_{z}\) ..... 23
\(v=b_{x} t_{x}+b_{y} t_{y}+b_{z} t_{z}\) ..... 24
\(w=i_{x} t_{x}+i_{y} t_{y}+i_{z} t_{z}\) ..... 25
\(s_{e}=a_{x} e_{x}+a_{y} e_{y}+a_{z} e_{z}\) ..... 26
\(v_{e}=b_{x} e_{x}+b_{y} e_{y}+b_{z} e_{z}\) ..... 27
\(w_{e}=i_{x} e_{x}+i_{y} e_{y}+i_{z} e_{z}\) ..... 28
\(s_{5}=a_{x} f_{5 x}+a_{y} f_{5 y}+a_{z} f_{5 z}\) ..... 28
\(v_{5}=b_{x} f_{5 x}+b_{y} f_{5 y}+b_{z} f_{s_{z}}\) ..... 30
\(w_{5}=i_{x} f_{5 x}+i_{y} f_{5 y}+i_{z}{ }^{f} 5_{z}\) ..... 31
\(\lambda=i_{x} 9_{x}+i_{y} 9_{y}+i_{z} 9_{z}\) ..... 32
\(\lambda_{5}=i_{x 95 x}+i_{y} 95 y+i_{z} 95 z\) ..... 33
\(\varepsilon=f_{x} f_{5 x}+f_{y} f^{f} y+f_{z} f_{5 z}\) ..... 34
d. Miscellaneous factors
\(R=\sqrt{1-r^{2}}\) ..... 35
\(0=\frac{1}{R} \frac{n q}{-\frac{n q}{\square q}}\) ..... 36
\(\left.\mu=\frac{1}{R^{2}} \cdot \frac{m q}{\mid m q} \right\rvert\,\) ..... 37
\(v=\frac{1}{R} \cdot \frac{p}{|P|}\) ..... 38
\(G=g_{x}{ }^{2}+g_{y}{ }^{2}+g_{z}{ }^{2}\) ..... 39
\(G_{5}=95 x^{2}+95 y^{2}+95 y^{2}\) ..... 40
\(M-\left(G p^{2}-2 m p \lambda+m^{2} R^{2}\right)^{\frac{1}{2}}\) ..... 41
\(M_{5}=\left(G_{5} p^{2}-2 m_{5} p \lambda_{5}+m_{5}{ }^{2} R^{2}\right)^{\frac{1}{2}}\) ..... 42
\(h=H_{1} /\left|g_{2}\right|\) ..... 43
\(h_{5}=(M h-|p| L) / M_{5}\) ..... 44
\(B=\left(\operatorname{Tan}^{2} \phi_{1}+\operatorname{Tan}^{2} \phi_{2}-2(\nu r / 0) \operatorname{Tan} \phi_{1} \operatorname{Tan} \phi_{2}\right) / R^{2}\) ..... 45
e. Plunge and trend of line of intersection of planes \(1 \varepsilon 2\)
\(\psi_{i}=\operatorname{Arcsin}\left(v i_{2}\right)\) ..... 46
\(a_{i}=\operatorname{Arctan}\left(-v i_{x} /-v i_{y}\right)\) ..... 47
f. Check on wedge geometry
No wedge is formed,
terminate computation. \(\left\{\begin{array}{l}1 f \mathrm{p} i_{z}<0 \text { or } \\ \text { if } n q i_{z}<0\end{array}\right.\) ..... 48 ..... 49
\(\left\{\begin{array}{l}\text { if } \mathrm{ena}_{5} i_{2}<0, \text { or } \\ \text { if } h_{5}<0, \text { or } \\ \text { if }\left|\frac{m_{5} h_{5}}{m h}\right|>1 \text {, or } \\ \text { if }\left|\frac{n q_{5} m_{5} h_{5}}{n_{5} q m h}\right|>1\end{array}\right.\) ..... 50 ..... 51
ension crack invalid terminate computation. ..... 52 ..... 53
g. Areas of faces and weight of wedge
\(A_{1}=\left(|m q| h^{2}-\left|m_{5} q_{5}\right| h_{5}^{2}\right) / 2|p|\) ..... 54
\(A_{2}=\left(|q / n| m^{2} h^{2}-\left|q_{5} / n_{5}\right| m_{5}^{2} h_{5}^{2}\right) / 2|p|\) ..... 55
\(A_{5}=\left|m_{5} a_{5}\right| h_{5}{ }^{2} / 2\left|n_{5}\right|\) ..... 56
\(W=\gamma\left(q^{2} m^{2} h^{3} /|n|-95^{2} m_{5}{ }^{2} h_{5}{ }^{3} /\left|n_{s}\right|\right) / 6|p|\) ..... 57
h. Water pressures
i) With no tension crack
\(u_{1}=u_{2}=\gamma_{w} n\left|m i_{2}\right| / 6|p|\)58
ii) With tension crack
\(u_{1}=u_{2}=u_{5}=\gamma_{w} h_{5}\left|m_{5}\right| / 3 d_{2}\) ..... 59
\(v=u_{5} A_{5} n \varepsilon /|\varepsilon|\) ..... 60
i. Effective normal reactions on planes 1 and 2 assuming contact on both planes
\(N_{1}=p\left(W k_{2}+T(r v=s)+E\left(r v_{e}-s_{e}\right)+V\left(r v_{5}-s_{s}\right)\right)=u_{1} A_{1} 61\)
\(N_{2}=W\left(W I_{2}+T(r s-v)+E\left(r s_{e}-v_{e}\right)+V\left(r s_{5}-v_{s}\right)\right)-u_{2} A_{2} 62\)
J. Factor of safety when \(\mathrm{H}_{1}<0\) and \(\mathrm{N}_{2}<0\) (contact is lost on both planes)
k. If \(N_{1}>0\) and \(N_{2}<0\), contact is maintained on plane 1

m. If \(N,>0\) and \(N_{2}>0\), contact is maintained on both planes and the factor of safety is calculated as follows:
\begin{tabular}{lll}
\(S\) & \(=v\left(W i_{z}-T w-E w_{e}-V w_{5}\right)\) \\
\(Q\) & \(=N_{1} T a n \phi_{1}+N_{2} T a n \phi_{2}+c_{1} A_{1}+c_{2} A_{2}\) & 78 \\
\(F_{3}=Q / S\)
\end{tabular}
2. Winimor factor of safety produced when Zoad \(\mathbf{E} 0_{0}^{f}\) given mazniまude is appiied in the worst direction.
a) Evaluate \(N_{1}^{\prime \prime}, N_{2}^{\prime \prime}, S^{\prime \prime}, Q^{\prime \prime}, F_{3}^{\prime \prime}\) by use of equations 61. 62. 78, 79 and 80 with \(E=0\).
b) If \(N_{1}{ }^{\prime \prime}<0\) and \(N_{2}^{\prime \prime}<0\), even before \(E\) is applied, then \(F=0\), terminate computation.
c) \(D=\left\{\left(N_{1}^{\prime \prime}\right)^{2}+\left(N_{2}^{\prime \prime}\right)^{2}+2 \frac{m n}{|\operatorname{mn}|} N_{1}^{\prime \prime} N_{2}^{\prime \prime r}\right\}^{\frac{1}{2}}\) 81 \(\psi_{e}=\operatorname{Arcsin}\left(-\frac{1}{G}\left(\frac{m}{m \mid} \cdot N_{1}{ }^{\prime \prime} a_{2}+\frac{n}{\left\lvert\, \frac{n}{n}\right.} \cdot N_{2}{ }^{\prime \prime} b_{2}\right)\right)\)
\(a_{e}=\operatorname{Arctan}\left\{\frac{\left|\frac{m}{m} \cdot N_{1} " a_{x}+\frac{n}{n}\right| \cdot N_{2}^{\prime \prime} b_{x}}{\left|\frac{m}{m}\right| \cdot N_{1} " a_{y}+\frac{n}{n \mid} \cdot N_{2}{ }^{\prime \prime} b_{y}}\right\}\)

If \(E>D\). and \(E\) is applied in the direction \(\psi_{e}, a\), , or within a certain range encompassing this direction, then contact is lost on both planes and \(F=0\). Terminate computation.
d) If \(N_{1}^{\prime \prime}>0\) and \(N_{2}^{\prime \prime}<0\), assume contact on plane 1 only after application of \(E\).
Determine \(S^{\prime \prime}, S_{y^{\prime \prime}}, S_{z}{ }^{\prime \prime}, S_{a}{ }^{\prime \prime}, Q_{a}{ }^{\prime \prime}, F_{1}{ }^{\prime \prime}\) fromequations 65 to 70 with \(E=0\).
If \(F_{1}{ }^{\prime \prime}<1\), terminate computation.
If \(F_{r \mid}{ }^{\prime \prime}>1\) :
\(F_{1}=\frac{S_{a}{ }^{\prime \prime} Q_{a} "=E\left(\left(Q_{a}{ }^{\prime \prime}\right)^{2}+\left(\left(S_{a}{ }^{\prime \prime}\right)^{2}-E^{2}\right) \operatorname{Tan}^{2} \phi_{1}\right\}^{\frac{1}{2}}}{\left(S_{a}{ }^{\prime \prime}\right)^{2}-E^{2}} \quad 84\)
\(\psi_{e 1}=\operatorname{Arcsin}\left(S_{z^{\prime}} 1 / S_{a}{ }^{\prime \prime}\right)-\operatorname{Arctan}\left(\operatorname{Tan} \phi_{1} / F_{1}\right) \quad\) a5
\(\alpha_{e 1}=\operatorname{Arctan}\left(S_{x}{ }^{\prime \prime} / S_{y^{\prime \prime}}\right)+180^{\circ} \quad 86\)
e) If \(N_{1}{ }^{\prime \prime}<0\) and \(N_{2}^{\prime \prime}>0\), assume contact on plane 2 only after application of \(E\).
 If \(F_{2}^{\prime \prime}<1\), terminate computation.
lf \(F_{2}^{\prime \prime}>1\) :
\(\begin{array}{ll}F 2=\frac{S_{b} " \prime Q_{b} "-E\left(\left(Q_{b} "\right)^{2}+\left(\left(S_{b}{ }^{\prime \prime}\right)^{2}-E^{2}\right) \operatorname{Tan}^{2} \phi_{2}\right)^{\frac{1}{2}}}{\left(S_{b}{ }^{\prime \prime}\right)^{2}=E^{2}} & a 7 \\ \psi_{e 2}=\operatorname{Arcsin}\left(S_{z}{ }^{\prime \prime} / S_{b} "\right)-\operatorname{Arctan}\left(\operatorname{Tan} \phi_{2} / F_{2}\right) & 88 \\ \alpha_{e 2}=\operatorname{Arctan}\left(S_{x}{ }^{\prime \prime} / S_{y} "\right)+180^{\circ} & 89\end{array}\)
f) If \(N_{1}{ }^{\prime \prime}>0\) and \(N_{2}{ }^{\prime \prime}>0\), assume contact on both planes after application of \(E\).
If \(F_{3}{ }^{\prime \prime}<1\), terminate computation.
If \(F_{7^{\prime \prime}}>1\) :
\(F_{3}=\frac{S^{\prime \prime} Q^{\prime \prime}-E\left\{\left(Q^{\prime \prime}\right)^{2}+B\left(\left(S^{\prime \prime}\right)^{2}-E^{2}\right)\right\}^{\frac{1}{2}}}{\left(S^{\prime \prime}\right)^{2}-E^{2}}\)
\begin{tabular}{|c|c|}
\hline \(X=\sqrt{B+F_{3}{ }^{2}}\) & 91 \\
\hline \(e_{x}=-\left(F_{3} v i_{x}-o k_{x} \operatorname{Tan} \Phi_{1}-\mu i_{x} \operatorname{Tan\phi _{2}}\right) / x\) & 92 \\
\hline \(e_{y}=-\left(F_{3} v i_{y}-\rho k_{y} \operatorname{Tan} \phi_{1}-\mu z_{y} \operatorname{Tan} \phi_{2}\right) / x\) & 93 \\
\hline \(e_{2}=-\left(F_{3} \vee i_{2}=\rho k_{2}{\operatorname{Tan} \phi_{1}}+\mu z_{2} \operatorname{Tan} \phi_{2}\right) / x\) & 94 \\
\hline \(\psi_{\text {e3 }}=\operatorname{Arcsin}\left(-e_{2}\right)\) & 95 \\
\hline \(a_{e^{3}}=\operatorname{Arctan}\left(e_{x} / e_{y}\right)\) & 96 \\
\hline Compute \(s_{e}\) and \(v_{e}\) using equations 26 and 27 & \\
\hline \(N_{1}=N_{1}^{\prime \prime}+E_{p}\left(r v_{e}-s_{e}\right)\) & 97 \\
\hline \(N_{2}=N_{2}{ }^{\prime \prime}+E \mu\left(r s_{e}-v_{e}\right)\) & 98 \\
\hline Check that \(N_{1} \geqq 0\) and \(N_{2} \geq 0\) & \\
\hline
\end{tabular}
3. Minimon cable or bolt tension Tmin required to raise the factor of safety to some specified value F .
a). Evaluate \(N_{1}{ }^{\prime}, N_{2}{ }^{\prime}, S^{\prime}, Q^{\prime}\) by means of equations 61,62 , 78. 79 with \(\mathrm{T}=0\).
b) If \(\mathrm{N}_{2}{ }^{\prime}<0\), contact is lost on plane 2 when \(T \geqslant 0\). Assume contact on plane 1 only, after application of \(T\). Evaluate \(S_{x}{ }^{\prime}, S_{y}^{\prime}, S_{z}{ }^{\prime}, S_{a}^{\prime}\) and \(Q_{a}^{\prime}\) using equations 65 to 69 with \(\mathrm{T}^{Y}=0\).
\[
\begin{array}{lr}
T_{1}=\left(F S_{a}{ }^{\prime}-Q_{a}{ }^{\prime}\right) / \sqrt{F^{2}+\operatorname{Tan}^{2} \phi_{1}} & 99  \tag{99}\\
\psi_{t 1}=\operatorname{Arctan}\left({\operatorname{Tan} \phi_{1}} / F\right)-\operatorname{Arcsin}\left(S_{z^{\prime}} / S_{a}{ }^{\prime}\right) & 100 \\
a_{t 1}=\operatorname{Arctan}\left(S_{x} \prime^{\prime} / S_{y}{ }^{\prime}\right) & 101
\end{array}
\]
c) If \(\mathrm{N}_{1}<\mathbf{0}\), contact is lost on plane \(\mathbf{1}\) when \(\mathrm{T}=\mathbf{0}\). Assume contact on plane 2 only, after application of \(T\). Evaluate \(S_{x}{ }^{\prime}, S_{y}{ }^{\prime}, S_{z}{ }^{\prime}, S_{b}\) and \(Q_{b}\) 'using equations 72 to 76 with \(\mathrm{T}^{-} 0\).
\(T_{2}=\left(F S_{b}{ }^{\prime}-Q_{b}{ }^{\prime}\right) / \sqrt{F^{2}+\operatorname{Tan}^{2} \phi_{2}} \quad 102\)
\(\psi_{\mathrm{t} 2}=\operatorname{Arctan}\left({\operatorname{Tan} \phi_{1} / F}=\operatorname{Arcsin}\left(S_{z}{ }^{\prime} / S_{\mathrm{b}}{ }^{\prime}\right) \quad 103\right.\)
at2 \(=\operatorname{Arctan}\left(S_{x} / S_{y}{ }^{\prime}\right) \quad 104\)
d) All cases. No restriction on values of \(N_{1}{ }^{\prime}\) and \(N_{2}{ }^{\prime}\). Assume contact on both planes after application of \(T\).
\(x=\left(F^{2}+B\right)^{\frac{1}{2}} 105\)
\(T_{3}=\left(F^{\prime}-Q^{\prime}\right) / x \quad 106\)
\(t_{x}=\left(F \vee i_{x}-o k_{x} \operatorname{Tan}_{1} \Phi_{1}-山 i_{x} \operatorname{Tan}_{2}\right) / x \quad 107\)
\(i_{y}=\left(F \vee i_{y}-\rho k_{y} \operatorname{Tan} \phi_{1}-\omega i_{y} \operatorname{Tan} \phi_{2}\right) / x \quad 108\)
\(\tau_{z}=\left(F \vee i_{z}=\rho k_{z} \operatorname{Tan} \phi_{1}-\mu z_{z} \operatorname{Tan} \phi_{2}\right) / x \quad 109\)
\(\psi_{t} 3^{=} \operatorname{Arcsin}\left(-t_{z}\right) \quad 110\)
\(\alpha_{t}=\operatorname{Arctan}\left(t_{X} / t_{Y}\right) \quad 111\)
Compute s and \(v\) using equations 23 and 24
\(N_{1}=N_{1}{ }^{\prime}+T_{3} \rho(r v-s) \quad 112\)
\(N_{2}=N_{2}{ }^{\prime}+T_{3} \mu(r s=v) 113\)
If \(N_{1}<0\) or \(N_{2}<3\), ignore the results of this section
If \(N_{1}^{\prime}>0\) and \(N_{2}{ }^{\prime}>0, \mathrm{~T}_{\text {min }}=\mathrm{T}_{3}\)
If \(N_{1}^{\prime}>0\) and \(N_{2}\) < \(0, T_{\text {min }}=\) smallest of \(T_{1}, T_{3}\)
If \(N_{1}^{\prime}<0\) and \(N_{2}^{\prime}>0\). \(T_{\text {min }}=\) smallest of \(T_{2}, T_{3}\)
If \(N_{1}{ }^{\prime}<0\) and \(N_{2}\) < \(0, T_{\text {min }}=\) smallest of \(T_{1}, T_{2}, T_{3}\)

Example
Calculate the factor of safety for the following wedge :
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 1 & & & & 5 & & \\
\hline Pliqne & 45 & 70 & 32 & 65 & 70 & & \\
\hline a & 105 & 235 & 195 & 185 & 165 & & \(n=+1\) \\
\hline \multicolumn{8}{|l|}{\(H_{i}=100^{\prime}, \mathrm{L}=40^{\prime}, c_{1}=500 \mathrm{lb} / \mathrm{ft}^{2}, \mathrm{c}_{2}=1000 \mathrm{lb} / \mathrm{ft}^{2}\)} \\
\hline \multicolumn{8}{|l|}{\(\phi_{1}=20^{\circ}, \phi_{2}=30^{\circ}, \gamma=160 \mathrm{lb} / \mathrm{ft}^{3}\).} \\
\hline
\end{tabular}
```

1a) T = 0, E=0, u
(a}\mp@subsup{a}{x}{},\mp@subsup{a}{y}{},\mp@subsup{a}{z}{})=(0.68301,-0.18301.0.70711
(bx, by, bz})=(-0.76975.-0.53899,0.34202)
(d
(}\mp@subsup{f}{x}{},\mp@subsup{f}{y}{},\mp@subsup{f}{z}{})=(-0.07899,-0.90286,0.42262
(f}\mp@subsup{5}{x}{},\mp@subsup{f}{\mp@subsup{5}{y}{}}{},\mp@subsup{f}{\mp@subsup{5}{z}{}}{})=(0.24321.-0.90767,0.34202
(9x
(95x, 95y, 95z})=(-0.57923,0.061627.0.57544
(i x, i
(jx, j}\mp@subsup{j}{y}{},\mp@subsup{j}{z}{})=(-0.79826, 0.05452. -0.03272
(j}\mp@subsup{5}{x}{},\mp@subsup{j}{5y}{},\mp@subsup{j}{5z}{})=(-0.81915,-0.25630, -0.09769
(\mp@subsup{k}{x}{},\mp@subsup{k}{y}{},\mp@subsup{k}{z}{})=(0.54041, -0.28287, 0.77047)
(z},\mp@subsup{z}{y}{},\mp@subsup{z}{z}{})=(-0.64321,-0.57289,0.47302
m=0.57833
ms = 0.58166
n=0.57388
n5=0.73527
P = 0.35880
q = 0.46206
q}=0.6094
r=-0.18526
s5=0.57407
" 5 =0.41899
w5}=-0.6094
\lambda = 0.76796
\lambda5}=0.5253
c=0.94483
R=0.98269
D = 1.03554
\mu=1.03554
v = 1.01762
G=0.83180
GS = 0.67044
M = 0.33371
M5 = 0.44017
h = 158.45
h}=87.52
B = 0.56299
\psii
\alpha

```
 Compare this value with the value of 1.73 obtained in case b of Appendix 1.

```

\psie3 = -1.620 - Plunge of force (upwards)
\mp@subsup{\alpha}{\mathbf{3}}{}=173.03}\mp@subsup{}{}{\circ}=\mathrm{ - Trend of force
N
N
3). As in la) except that the minimum cable tension $T_{\text {min }}$ required to increase the factor of safety to $\mathbf{1 . 5}$ is to be determined.
$N_{1}{ }^{\prime}, N_{2}{ }^{\prime}, S^{\prime}$ and Q^{\prime} - as given in la)
$x=1.6772$
$T_{3}=3.4307 \times 10^{6} \mathrm{lb}-T_{\text {min }}($ Minimum cable tension)
$t_{x}=-0.18205$
$t_{y}=0.97574$
$t_{z}=0.12148$
$\psi_{t 3}=-6.98^{\circ}-$ Piunge of cable (upwards)
$a_{t}=349.430$ - Trend of cable

```

Note that the optimum plunge and trend of the cable are approximately :
\(\psi_{t}{ }^{3}=\psi_{i}+180^{\circ}=\frac{1}{2}\left(\phi_{1}+\phi_{2}\right)=31.2+180-25\)
\(=-6.2^{\circ}\) (upwards)
and \(a_{t 3}=a_{i} \pm 180^{\circ}=157.73+180=337.730\)

In other words, a practical rule of thumb for the best direction in which to install the cables to reinforce a wedge is :

The cable should be aligned with the line of intersection of the two planes, viewed from the bottom of the \(\boldsymbol{s}\) lope, and it should be inclined at the average friction angle to the line of intersection.


\section*{Appendix 3: Factors of safety for reinforced rock slopes}

Throughout this book, the factor of safety of a reinforced rock slope (for both plane and wedge failure) has been defined as :
\[
F=\frac{\text { Resisting force }}{\text { Disturbing force }-T . S i n \theta}
\]
where \(T\) is the force applied to the rock by the reinforcing member.

In other words, the force \(T\) is assumed to act in such a manner as to decrease the disturbing force. Pierre Londe*, in a personal commication to the authors, suggested that a second definition is equally applicable :
\[
F=\frac{\text { Resisting force }+T}{\text { Disturbing force }}
\]

In this definition, the force \(T\) increases the resisting force.

Which definition should be used ? Londe suggests that there is some justification for using equation 1 when \(T\) is an active force, le the cable is tensioned before any movement of the rock block or wedge has taken place. On the other hand, If \(T\) is a passive force, applied by untensioned bars or cables, the resisting force can only be developed after some movement has taken place. In this case, Londe suggests that equation 2 is more appropriate.

In fact, since one never knows the exact sequence of loading and movement in a rock slope, the choice becomes arbitrary. However, in considering this problem, a second and more significant problem arises and this relates to the degree of confidence attached to the values of the shear strengths and water pressures used in the stability analysis. The method of solution described below, based upon a suggestion by Londe, is designed to overcome both of the problems raised here.
If, for the moment, it is assumed that the frictional and cohesive strengths of a rock surface are known with a high degree of precision and the water pressures have been measured by means of piezometers, one may be led to believe that a high degree of confidence can be attached to the calculated driving and resisting forces and hence the factor of safety of the slope. While this confidence would be justified in the case of an unreinforced slope. that same could not be said of a reinforced slope. This is because the response of the various elements to displacement in the slope is not the same. The development of the full frictional strength, due to and the cohesive strength c require a finite displacement on the sliding surface and this displacement may be incompatible with that imposed by the application of the cable tension T. Similarly, water pressures in the fissures are sensitive to displacement and may increase or decrease. depending upon the manner in which the cables are installed. Consequently. it cannot be assumed that the cable tension \(T\), the frictional strength due to \(\phi\), the cohesive strength \(c\) and the various water pressures are all fully mobilised at the same time.

\footnotetext{
Technical director, Coyne \& Bellier, Paris. France.
}

Londe suggests that, instead of using a single factor of safety to define the stability of the slope, different factors of safety should be used, depending upon the degree of confidence which the designer has in the particular parameter being considered. High factors of safety can be applied to ill-defined parameters (such as water pressures and cohesive strengths) while low factors of safety can be used for those quantities (such as the weight of a wedge) which are known with a greater degree of precision. For a typical problem, Londe suggests :
\(f_{c}=1.5\) for cohesive strengths (c)
\(f_{\phi}=1.2\) for frictional strengths ( \(\varnothing\) )
\(f_{u}=2.0\) for water pressures
\(f_{w}=1.0\) for weights and forces.
Using these values, the conditions of limiting equilibrium expressed in equation 12 on page 77 , for a block sliding down a plane, can be expressed as :
\(W \cdot \sin \psi+2 V=T \cdot \cos B=\frac{C A}{1.5}+(W \cdot \cos \psi=2 U+T \cdot \sin B)^{\top} \frac{\sin \psi}{1.2} 3\)
Note that the factors of safety (given in italics) for the parameters corresponding to the resisting forces ( \(c\) and \(\phi\) ) are decreasing factors while they are increasing factors for the driving forces ( \(U\) and \(V\) ).

Solving equation 3 for \(T\) gives :
\(T=\frac{W(\sin \psi-0.83 \cdot \cos \psi . \operatorname{Tan} \phi)+2 v+1.67 U \operatorname{Tan} \phi-0.67 c A}{0.83 \sin B . \operatorname{Tan} \phi+\cos B}\)
This is the cable tension required to satisfy the factors of safety assigned to each of the components of the driving and resisting force terms.

Consider the practical example discussed in Case d) of Appendix 1 of this book. It was required to determine the cable tension \(T\) needed to increase the factor of safety of a rock wedge to 1.5. In this case, the factor of safety was applied uniformly to \(C_{A}, C_{B}, \operatorname{Tan}_{A}\) and Tang \(B\) while a factor of safety of 1 was applied to \(U_{A}, U_{B}\), and \(W\). The required value of \(T\) was found to be \(4.64 \times 10^{6} \mathrm{l}\).

Using the alternative method proposed by Londe and substituting the factors of safety suggested by him, equation \(A 49\) of Appendix 1 can be rewritten as :
\[
\begin{aligned}
& \frac{1}{1.5}\left(c_{A} A_{A}+c_{B} A_{B}\right)+\left(q W+2 r V+s t=2 U_{A}\right) \frac{\operatorname{Tan} \phi_{A}}{1.2} \\
& \quad+\left(x W+2 y V+\quad z T-2 U_{B}\right) \frac{\operatorname{Tan} \phi_{B}}{1.2}=m_{W 5} W-2 m_{V S} V-m_{T} T^{5}
\end{aligned}
\]

Solving for \(T\), using the same values as in case d) of Appendix 1 , gives \(T=9.8 \times 10^{6} \mathrm{lb}\).

This value is approximately twice that obtained by using a single value of \(F=1.5\) and Londe considers it to be more realistic \(\ln\) view of the uncertainties associated with the water pressures and the simultaneous mobilisation of \(T, c\) and \(\downarrow\). The reader should not be alarmed unduly by the discrepancy between the two calculated values of \(T\) since
```

550 IF LEN(WATER$)=0 THEN 520 ELSE WATER =VAL(WATER$)
560 IF WATER = 0 THEN FLAG2=1
570 FLAG3=0: LOCATB13.12
580 INPUT "Are shear strengths uniform throughout slope (y/n) ?",STRENGTHS
590 IF LBFT$(STRENGTH$,1)="q" OR LEFT$(STRENGTH$,1)="O" THEN 6980
600 IF LEN(STRENGTH$)=0 THEN 570
610 IF LBFT$(STRENGTH$,1)="Y" OR LEFT$(STRENGTH$, 1)="y" THEN FLAG3=1
620 N=NUM+1:GOTO 1950
630
640' Data eotry from a disk file
650'
660 CLS:LOCATE 8,1:PRINT STRING$(8\Omega A5)
670 PRINT:PRINT "Sarma data files on disk";
680 PRINT: FILES "A:SARMA*.DAT":PRINT:PRINT STRING$(80,45):PRINT
690 INPUT "Enter filename (without extension): ",FILE$
700 CLS:OPBN "A:"+FILLS$+".DAT" FOR INPUT AS *l
710 LINK INPUT*1, TITLE$: INPUT*1,N: INPUT*1,WATER
720 RAD=3.141593/180:F=1:M=1:NMSN-1
730 INPUT:1, FLAG2: INPUT*1,FLAG3:INPUT*1,FLAG4
740 FOR K = 1 TO N: FOR J=1 TO 39: INPUT*1,A(J,K):NEXT J:NEXT K
750 INPUT*1, ACC: INPUT*1, ACC(2): INPUT\#1, FOS
760 CLOSE \#l:F=1: FLAG6=1:STATU$="e":GOTO 1950
770
760 * Display Of data array
790'
800 CLS:LOCATE 1,1:PRINT "Analysis no.";TITLE$
810 LOCATE 3,1:COLOR 15,0:PRINT "Side number":COLOR 7,0
820 LOCATE 4,1:PRINT "coordinate xt"
830 LOCATE 5,1:PRINT "coordinate yt"
\&O LOCATE 6,1:PRINT "coordinate xw"
850 LOCATE 7,1:PRINT "coordinate yw"
860 LOCATE 8,1:PRINT "coordinate xb"
870 LOCATE 9,1:PRINT "coordinate yb"
880 LOCATE 10,1:PRINT "friction angle"
890 LOCATE 11,1:PRINT "cohesion"
900 LOCATR 12,1:PRINT "unit weight of water = "
910 LOCATE 12,23:PRINT WATER
920 LOCATE 13,1:COLOR 15.0
930 PRINT "Slice number":COLOR 7.0
940 LOCATE 14,1:PRINT "rock unit weight"
950 LOCATE15,1:PRINT "friction angle"
960 LOCATR 16,1:PRINT "cohesion"
970 LOCATE 17,1:PRINT "force т":LOCATE 18.1
980 PRINT "angle theta"
990 cOSUB 1040
1000 IF STATUS=*i" THEN COSUB 1140: RETURN ELSE RRTURN
1010*
1020' Subroutine for slice muber display
1030.
1040 COLOR 15,0:LOCATE 3,22:PRINT M: LOCATE 13.27:PRINT M
1050 LOCATE 3,32:PRINT M+1:COLOR 7,0:IF N=M+1 THEN RRTURN
1060 COLOR 15,0: LOCATB 13,37:PRINT M+1: LOCATB 3.42
1070 PRINT M+2:COLOR 7,0:IF N=N+2 THEN RETURN
1080 COLOR 15,0:LOCATS 13,47:PRINT M+2:LOCATE }3.5

```

\section*{Appendix 4 : Conversion factors}
\begin{tabular}{|c|c|c|c|}
\hline & Imperial & Metric & S1 \\
\hline Length & \[
\begin{aligned}
& 1 \mathrm{mile} \\
& 1 \mathrm{ft} \\
& 1 \mathrm{in}
\end{aligned}
\] & \[
\begin{aligned}
& 1.609 \mathrm{~km} \\
& 0.3048 \mathrm{~m} \\
& 2.54 \mathrm{~cm}
\end{aligned}
\] & \[
\begin{aligned}
& 1.609 \mathrm{~km} \\
& 0.3048 \mathrm{~m} \\
& 25.40 \mathrm{mn}
\end{aligned}
\] \\
\hline Area & \begin{tabular}{l}
\(1 \mathrm{mile}{ }^{2}\) \\
1 acre \\
\(1 \mathrm{ft}^{2}\) \\
\(1 \mathrm{in}^{2}\)
\end{tabular} & \[
\begin{aligned}
& 2.590 \mathrm{~km}^{2} \\
& 0.4047 \mathrm{hectare}^{0} \\
& 0.0929 \mathrm{~m}^{2} \\
& 6.452 \mathrm{~cm}^{2}
\end{aligned}
\] & \[
\begin{aligned}
& 2.590 \mathrm{~km}^{2} \\
& 4046.9 \mathrm{~m}^{2} \\
& 0.0929 \mathrm{~m}^{2} \\
& 6.452 \mathrm{~cm}^{2}
\end{aligned}
\] \\
\hline Volume & ```
1 yd 3
1 ft }\mp@subsup{}{}{3
1 ft
1 Imperial gallon
1 US gallon
1 in }\mp@subsup{}{}{3
``` & \[
\begin{aligned}
& 0.7646 \mathrm{~m}^{3} \\
& 0.0283 \mathrm{~m}^{3} \\
& 28.32 \text { litres } \\
& 4.546 \text { Iitres } \\
& 3.785 \text { Iitres }^{16.387 \mathrm{~cm}^{3}}
\end{aligned}
\] & \[
\begin{aligned}
& 0.7646 \mathrm{~m}^{3} \\
& 0.0283 \mathrm{~m}^{3} \\
& 0.0283 \mathrm{~m}^{3} \\
& 4546 \mathrm{~cm}^{3} \\
& 3785 \mathrm{~cm}^{3} \\
& 16.387 \mathrm{~cm}^{3}
\end{aligned}
\] \\
\hline Mass & \[
\begin{aligned}
& 1 \text { ton } \\
& 1 \text { lb } \\
& 1 \text { oz }
\end{aligned}
\] & \[
\begin{aligned}
& 1.016 \text { tonne } \\
& 0.4536 \mathrm{~kg} \\
& 28.352 \mathrm{gm}
\end{aligned}
\] & \[
\begin{aligned}
& 1.016 \mathrm{Mg} \\
& 0.4536 \mathrm{~kg} \\
& 28.352 \mathrm{gm}
\end{aligned}
\] \\
\hline Density & \(1 \mathrm{lb} / \mathrm{ft}^{3}\) & \(16.019 \mathrm{~kg} / \mathrm{m}^{3}\) & \(16.019 \mathrm{~kg} / \mathrm{m}^{3}\) \\
\hline Unit weight & \(1 \mathrm{lb} 5 / \mathrm{ft}^{3}\) & \(16.019 \mathrm{~kg} \mathrm{f/m}{ }^{3}\) & \(0.1571 \mathrm{kN} / \mathrm{m}^{2}\) \\
\hline Force & \[
\begin{aligned}
& 1 \text { ton f } \\
& 1 \text { lb } f
\end{aligned}
\] & \[
\begin{aligned}
& 1.016 \text { tonne f } \\
& 0.4536 \mathrm{~kg} \mathrm{f}
\end{aligned}
\] & \[
\begin{aligned}
& 9.964 \mathrm{kN} \\
& 4.448 \mathrm{~N}
\end{aligned}
\] \\
\hline Pressure or stress & \[
\begin{aligned}
& 1 \text { ton } \mathrm{f} / \mathrm{in}^{2} \\
& 1 \mathrm{tonn} / \mathrm{ft}^{2} \\
& 1 \mathrm{ib} \mathrm{f} / \mathrm{in}^{2} \\
& 1 \mathrm{ib} \mathrm{f} / \mathrm{ft}^{2} \\
& 1 \text { standard } \\
& \text { atmosphere }
\end{aligned}
\] & \[
\begin{aligned}
& 157.47 \mathrm{~kg} \mathrm{f} / \mathrm{cm}^{2} \\
& 10.936 \mathrm{tonne} \mathrm{f} / \mathrm{m}^{2} \\
& 0.0703 \mathrm{~kg} \mathrm{f} / \mathrm{cm}^{2} \\
& 4.882 \mathrm{~kg} \mathrm{f} / \mathrm{m}^{2} \\
& 1.033 \mathrm{~kg} \mathrm{f} / \mathrm{m}^{2}
\end{aligned}
\] & \begin{tabular}{l}
15.44 MPa \\
107.3 kPa \\
6.895 kPa \\
0.04788 kPa \\
101.325 kPa
\end{tabular} \\
\hline & \begin{tabular}{l}
\(14.435 \mathrm{lb} \mathrm{f} / \mathrm{in}^{2}\) \\
1 ft water \\
1 in mercury
\end{tabular} & \(1.015 \mathrm{~kg} \mathrm{f} / \mathrm{cm}^{2}\) \(0.0305 \mathrm{~kg} \mathrm{f} / \mathrm{cm}^{2}\) \(0.0345 \mathrm{~kg} \mathrm{f} / \mathrm{cm}^{2}\) & \[
\begin{aligned}
& 1 \mathrm{bar} \\
& 2.989 \mathrm{kPa} \\
& 3.386 \mathrm{kPa}
\end{aligned}
\] \\
\hline Permeability & \(1 \mathrm{ft/year}\) & \(0.9659 \times 10^{-6} \mathrm{~cm} / \mathrm{s}\) & \(0.9659 \times 10^{-8} \mathrm{~m} / \mathrm{s}\) \\
\hline Flow rate & \(1 \mathrm{ft} 3 / \mathrm{s}\) & \(0.02832 \mathrm{~m} / \mathrm{s}\) & \(0.02832 \mathrm{~m}^{3} / \mathrm{s}\) \\
\hline Moment & 1 lbf ft & 0.1383 kgf m & 1.3558 Nm \\
\hline Energy & 1 ft lbf & 1.3558 J & 1.3558 J \\
\hline Frequency & \(1 \mathrm{c} / \mathrm{s}\) & \(1 \mathrm{c} / \mathrm{s}\) & 1 Hz \\
\hline
\end{tabular}

SI unit prefixes
\begin{tabular}{lcccccccc}
Prefix & tcra & giga & mega & kilo & milli & micro & nano & pico \\
Symbo1 & T & G & M & k & m & H & n & P \\
Multiplier & \(10^{12}\) & \(10^{9}\) & \(10^{6}\) & \(10^{3}\) & \(10^{-3}\) & \(10^{-6}\) & \(10^{-9}\) & \(10^{-12}\)
\end{tabular}

SI symbols and definitions
\[
\begin{aligned}
& N=\text { Newton }=\mathrm{kg} \mathrm{~m} / \mathrm{s}^{2} \\
& \mathrm{~Pa}=\text { Pascal }=\mathrm{N} / \mathrm{m}^{2} \\
& \mathrm{~J}=\text { Joule }=\mathrm{m} . \mathrm{N}
\end{aligned}
\]

\section*{GLOSSARY OF BLASTING AND EXCAVATION TERMS}

Accoustical Impedance - The mathematical expression for characterlzing a material as to lts energy transfer properties (the product of lts unlt density and Its sound veloclty (pV)).

Adit - A nearly hor I zonta I passage from the surface by which an underground mine is entered, as opposed to a tunnel.

Air Gap - A blastling technique whereln a charge is suspended In a borehole, and the hole tightly stemmed so as to al low a tlme lapse between detonation and ultimate fallure of the rock (no coupl Ing real ized).

Anfo - Ammonlum Nitrate - Fuel Oll Mixture. Used as a blasting agent.

Astrollte - A family of two-component explosives, usually Tiquid, with variable detonating velocitles.

Back - The roof or top of an underground open Ing. Also, used to speclfy the ore between a level and the surface, or that between two levels.

Back Break - Rock broken beyond the limits of the last row of holes.

Bench - The horizontal ledge In a face along which holes are dritled vertically. Benching ls the process of excavating whereby terraces or ledges are worked in a stepped shape.

Blast - The operation of rending (breaking) rock by means of explosives. Shot Is also used to mean blast.

Blasting Agent - Any materlal or mixture, conslsting of a fuel and oxldzer, Intended for blasting, not otherwlse classif led as an explosive and In rhich none of the Ingredients are classif led as an explosive, provided that the finished product, as \(m i x e d\) and packaged for use or shlpment, cannot be detonated by means of a No. B test blasting cap when unconf Ined.

Blast Hole -A hole drlled In rock or other materlal for the placement of explosives.

Block Hole - A hole drilled Into a boulder to allow the placement of a small charge to break the bou I der .

Booster - A chemical compound used for Intenslfylng an explosive react lon. A booster does not contain an initiating device but must be cap sensitive.

Boot-Leg - A situation In which the blast falls to cause total fallure of the rock due to Insuff lclent exp losives for the amount of burden, or caused by Incomplete detonation of the explosives. That portion of a borehole that remalns relatively Intact after having been charged with explosive and fired.

Bridging - Where the continulty of a column of explosives In a borehole is broken, el ther by Improper \(p\) Iscement, as In the case of slurrles or poured blasting agents, or where some forelgn matter has plugged the hole.

Bulk Strength - Refers to the strength of a cartridge of dynamife In relafion to the same sized cartridge of stralght Nitroglycerlne dynamlte.

Burden - generally considered the distance from an explosive charge to the nearest free or open face. Technically, there may be an apparent burden and a true burden, the latter belng measured always in the direction In which displacement of broken rock wlloccur following firing of an explosive charge.

Centers - The distance measured between two or more adjacent blast holes wlthout reference to hole locations as to row. The term has no association with the blast hole burdens.

Chamber Ing - More commonly termed SpringIng. The process of enlarging a. portion of a blast hole (usually the bottom) by flring a serles of smal I exploslve charges.

Col lar - The mouth or opening of a borehole, drill steep, or shaft. Also, to col lar in drl I ling means the act of starting a borehole.

Condensor-Discharge - A blasting machine which uses batterles to energize a serles of condensors, whose stored energy ls released into a blasting circuit.

Connecting Wire - Any wire used in a blasting circult to extend the length of a leg wire or leading wire.

Connector -Refers to a device used to Initlate a delay In a Primacord clrcult, connecting one hole in the circuit with another, or one row of holes to other rows of holes.

Coupling - The act of connecting or joining two or more disfinct parts. In blasting the reference concerns the transfer of energy from an explosive reaction Into the surrounding rock and is considered perfect when there are no losses due to absorption or cushioning.

Coyote Blastling = The practice of drilling blast holes (tunnels), horizontally into a rock face at the foot of the shot. Used where it Is impractical to drill vertically.

Cushion Blasting - The technlque of flring of a single row of holes along a neat excavation I Ine to shear the web between the closely dri l led holes. Fired after production shooting has been accomplished.
cut -More strictly It is that portion of an excavation with more or less specific depth and widh, and continued in like manner along or through the extreme limits of the excavation. A ser les of cuts are taken before complete removal of the excavated materlal is accomplished. The speclflc dimenslons of any cut ls closely related to the materlal's properties and required production levels.

Cut-Off - Where a portion of a column of explosives has failed to detonate due to bridging, or to a shifting of the rock format lon due to an improper delay system.

Deck - In blasting a smaller charge or portion of a blast hole loaded with explosives that ls separated from the maln charge by stemming or air cushion.

Deflagratlon - An explosive reaction that consists of a burnting action high rate of speed along whlch occur gaseous formation and pressure expansion.

Delay Element - That portion of a blasting cap whlch causes a defoymanden the instant of impressment of electrical energy on the cap and the time of detonation of the base charge of the cap.

Detonating Cord - A plastic covered core of high veloclty explosives used to detonate charges of exploslves in boreholes and under water, e.g. Pr lmacord.

Detonation - An explosive reaction that conslsts of the propagation of a shock wave through the exp los i ve accompan led by a chemical reaction that furnishes energy to sustain the shockwave propagation in a stable manner, with gaseous formation and pressure expansion following shortly thereafter.

Dip - The engie ot which strata, beds, or veins are Inclined from the norizontal.

Drop Ball - known al so as a Headache Ba II. An iron or stee I mantweld on a wlie rope that is dropped from a helght onto large boulders for the purpose of breaking them into smaller fragments.

Explosion - A thermochemical process whereby mixtures of gases, solids,. cor liquids react with the almost instantaneous forma\(t\) lon of gaseous pressures and near sudden heat release. There must always be a source of ignltion and the proper temperature limit reached to Initiate the reaction. Technically, a boller can rupture but cannot explode.

Explosive - Any chemical mixture that reacts at high speed to Th distinctions between HIgh and Low Explosives are twofold; the former are designed to detonate and contaln at least one high explosive ingredient; the latter always deflagrate and contain no ingredients which by themselves can be exploded. Both High and Low Explosives can be Inltlated by a single No. 8 blasting cap as opposed to Blasting Agents which cannot be so initiated.

Face - The end of an excavation toward whlch work is progress--or that which was last done. It is also any rock surface exposed to air.

Fire - In blasting it Is the act of Inltiating an explosive reaction.

Floor - The bottom horizontal, or nearly so, part of an excavafion upon which haulage or walking is done.

Fragmentation - The extent to which rock is broken Into small pleces by prTmary blasting.

Fracture \(=\) Literal ly, the breaking of rock without movement of the broken pieces.

Fuel = In explosive calculations it is the chemical compound used for purposes of combining with oxygen to form gaseous products and cause a release of heat.

Galvanic Action = Currents caused when dis-similar metals contact each other, or through a conductive med i urn. This action may create sufficient voltage to cause premature firing of an electric blasting circuit, particularly in the presence of salt water.

Galvanometer - A device containing a silver chloride cell which is used to measure resistance in an electric blasting circuit.

Grade - In excavation, it specifies the elevation of a roadbed, foundation, etc. When given a value such as percent or degree grade it is the amount of fall or inclination compared to a unit horizontal distance for a ditch, road, etc. To grade means to level ground irregularities to a prescribed level.

Gram Atom - The unit used in chemistry to express the atomic weight of an element in terms of grams (weight).

Hardpan - Boulder clay, or layers of gravel found usually a few feet below the surface and so cemented together that it must be blasted or ripped in order to excavate.

Hiqhwal 1 - The bench, bluff, or ledge on the edge of a surface excavation and most usually used only in coal strip mining.

Initiation - The act of detonating a high explosive by means of a mechanical device or other means.

Joints = Planes within rock masses along which there is no resistence to separation and along which there has been no relative movement of the material on each side of the break. They occur in sets, the planes of which are generally mutually perpendicular. Joints, like stratification, are often called partings.

Jumbo - A machine designed to contain two or more mounted drilling units which may or may not be operated independently.

Lead Wire - The wires connecting the electrodes of an electric blasting machine with the final leg wires of a blasting circuit.

LEDC - Low Energy Detonating Cord. Used to initiate non-electric caps at the bottom of boreholes.

Leq Wires - Wires, leading from the top end of an electric blasting cap; used to couple caps into the circuit.

Mat - Used to cover a shot to hold down flying material; usually made of woven wire cable, tires or conveyor belt.

Millisecond Delay Caps - Delay electric caps which have a built-in delay element, usually \(25 / 1000\) th of a second apart, consecutively. This timing may vary from manufacturer to manufacturer.

Misfire - A charge, or part of a charge, which for any reason has failed to fire as planned. All misfires are to be considered extremely dangerous until the cause of the mistire has been determined.

Mole - A unit in chemical technology equal to the molecular weight of a substance expressed in grams (woight).

Muck Pile - The pile of broken material or dirt in excavating that is to be loaded for removal.

Mud Cap - Referred to also as Adobe or Plaster Shot. A charge of explosive fired in contact with the surface of a rock after being covered with a quantity of mud, wet earth, or simllar substance, no borehole being used.

Open Pit - A surface operation for the mining of metallic ores, coal. clay, etc.

Overbreak - Excessive breakage of rock beyond the desired excavation limlt.

Overburden - The material lying on top of the rock to be shot; usually refers to dirt and gravel, but can mean another type of rock; e.g. shale over I imestone.

Oxidizer - A supplier of oxygen.
Permissible - Explosives having been approved by the U.S. Bureau of Mines for non-toxic tumes, and allowed In underground work.

Powder - Any of various solid exploslves.
Premature - A charge which detonates before it is Intended to.
Presplitting - Stress relief involving a single row of holes, drilled along a neat excavation I ine, where detonation of explosives in the hole causes shearing of the web of rock between the holes. Prespl it holes are fired in advance of the production holes.

Primary Blast - The main blast executed to sustain production.
Primer - An explosive unit containing a suitable firing device that is used for the initiation of an entire explosive charge.

Quarry - An open or surface mine used for the extraction of rock such as limestone, slate, building stone, etc.

Riprap - Coarse sized rocks used for river bank, dam, etc., stablization to reduce erosion by water flow.

Round- A group or set of blast holes constituting a complete cut in underground headings, tunnels, etc.

Seam - A stratum or bed of mineral. Al so, a stratification plane in a sedimentary rock deposit.

Secondary Blasting - Using explosives to break up larger masses of rock resulting from the primary blasts, the rocks of which are generally too large for easy handling.

Selsmograph - An Instrument that measures and suppl les a permanent record of earthborne vibrations Induced by earthquakes, blasting, etc.

Sensitizer - The ingredient used In explosive compounds to promote greater ease In Inltiation or propagation of the reactlons.

Shot Firer - Also referred to as the Shooter or Blaster. The person who actually flras a blast. A Powderman, on the other hand, may charge or load blast holes with explosives but may not flre the blast.

Shunt - A piece of metal connecting two ends of leg wires to prevent stray currents from causl ing acc idental detonat Ion of the cap. The act of dellberately shorting any portlon of an electrical blasting circult.

Slope - Used to defline the ratio of the vertical rlse or helght to horlzontal distances In describing the angle a bank or bench face makes with the horizontal. For example, a \(1-1 / 2\) to 1 slope means there would be a \(1-1 / 2 \mathrm{ft}\). rlse to each 1 ft . or horlzontal distance.

Snake Hole - A hole drl I led or bored under a rock or tree stump for the placement of explosives.

Spacling In blasting, the dlstance between boreholes or charges In a row.

Steming - The Inert material, such as orlill cuttings, used In the collar portlon (or elsewhere) of a blast hole so as to confine the gaseous products formed on exp losion. Also, the length of blast hole left uncharged.

Strength - Refers to the energy content of on explosive In relation to an equal amount of nitroglycer Ine dynamite.

Stratification - Planes within sedimentary rock deposits formed by inferruptlons in the deposition of sediments.

Strike - The course or bearing of the outcrop of an Inc I Ined bed or geologic structure on a level surface.

Sub-DrIII - To drl I I blast holes beyond the planned grade lines or below floor level.

Swell Factor -The ratio of the volume of a material In Its I Id state to that when broken.
- The process of compressing the stemming or explosive Lasthole.

Toe - The burden or distance between the bottom of a borehole fo the vertical free face of a bench In an excavation.
veloclty - The measure of the rate at which the detonation wave frovels through an explosive.

\section*{Appendix 6 Geotechnical data collection manual}

\section*{PART 1 - INTRODUCTION}

A natural rock mass is never a continuous, homogeneous, isotropic material but is intersected by a great variety of discontinuities such as faults, joints, bedding, foliation or cleavage. In addition, there may be a number of rock types, and these may be subjected to varying degrees of alteration by weathering. It is clear that the behavior of such a material, subjected to external loading, cannot be analyzed or predicted unless these structural features are taken into account.

When subjected to loading the rock mass will preferentially fail along the weak discontinuities rather than through stronger intact rock. In order to establish the mechanism by which movement may occur, and also the resistance to that movement, a geotechnical appraisal of the rock mass is required. Ideally a complete description should be obtained of the location and orientation of all discontinuities and also the nature of the intact rock which may affect the stability of the underground opening or slope under study. Such a complete study is rarely efther technically possible and/or economically justifiable and a compromise is usually required.

Once the spatial relationship of the discontfnuities has been approximately determined, a "model" can be formed. The analysis of these models, when the stress distribution and strength properties are also known, enables a prediction of the performance of the slope to be made.

Part 2 of this manual outlines the parameters which are considered important in structural analysis. Parts 3 and 4 detail the techniques for obtaining structural information from surface and underground exposures, and from boreholes, respective1y. Parts 5, 6, and 7 describe associated techniques and equipment which are used to collect the geological and geotechnical data and provide additional information.

Attempts have been made to standardize mapping and logging methods and the format of the recording sheets. However, the diversity of site conditions and different uses of the data. often require that some modifications be made to the methods to suit the needs of each project. The purpose of geological investigations for slope designs is to identify and make proper record of those parameters that are most likely to influence the stability of a particular slope. Experience is important in the identification of controlling parameters and the decision as to methodology must remain with the project engineer.

The end product of an investigation is the presentation of data in such a way that it graphically illustrates the field situation and contains data in a form compatible with any intended analytical procedures. Typically, this may include a set of maps or plans, a complete data listing with selected stereo plots, and drafted versions of some field sheets.

To this end, the investigation will always start on a reconnaissance basis, with the emphasis on observation and generalized sampling method; in short, rapid efficient development of a picture of general geological site conditions. Detailed sampling techniques including definitive joint mapping, in situ
materials testing, structural drilling, and hydrological testing can then be undertaken in places where specific information is required for analytical purposes.

It is, therefore, important to establish the objective of an investigation early in the program and direct all data collection toward that objective. This will lead to maximum utility of the data and will ensure that a minimum of time is spent detailing non-important characteristics.

\section*{A6-3}

\section*{PART 2 - PARAMETERS}

The basic parameters to be considered when collecting structural geological data related to discontinuities for stability studies in rocks are:
1) Mapping location.
2) Classification of discontinuities by type.
3) Orientation of discontinuities. and division into "sets" having similar orientations.
4) Infilling of the discontinuities.
5) Surface properties.
6) Spacing of discontinuities within sets.
7) Persistence of fractures.
8) Rock mass parameters.

Parameters 4 and 5 define the strength properties of the discontinuities while parameters 6 and 7 define the geometry of the blocks forming the rock mass. The following sections give details of coding notations to assist in filling out the forms and logs explained in parts 3 and 4 of this manual. Coding notations are used to simplify input to a variety of data handling and processing computer programs. Specific notations may be changed provided that a detailed record is kept of their meanings.

\section*{1) HAPPING LOCATION}

The location of the area being mapped is recorded as Data Unit information and in columns 1 to 4 of the logging sheets shown in Figures 9 and 11 for surface mapping and-core logging respectively. The data unit is the traverse or borehole number and the location is the distance along the unit at which the intersection of the discontinuity occurs.

\section*{2) CLASSIFICATION OF DISCONTINUITY TYPES}

A discontinuity in the context of engineering geology can be defined as any natural fracture in the rock mass; in addition, it may be a piane marking the change in geological or geotechnical characteristics. The discontinuity type notation is placed in columns 5 to 7 on the logging sheets (Figures 9 and 11). Common types of discontinuity and their notations include:

Contact
The boundary between two distinct rock types. Contacts are not always regular and well defined, nor do they necessarily form the site of a discontinuity, particularly in metamorphic and igneous rocks. Notation C.

Fault or Shear
A fault or shear is a discontinuity along which movement can be demonstrated to have occurred, either by the relative displacement of marker horizons, or by the presence of slickensides or gouge. The magnitude and direction of movement may be measurable. The fault may be represented by a zone of breccia/gouge, rather than a single discontinuity surface, or shear plane. The
notations used are \(F\) for fault, and \(S\) for shear. In certain cases faults may be rehealed or cemented by subsequent geological processes.

Joint
A joint is a natural discontinuity which is generally not parallel to lithological variations and which shows no signs of shear displacement. Such features are often impersistent. Notation J.

A group of joints having the same general orientation is termed
a \({ }^{\text {gretw }}\). a "set".

\section*{Bedding}

Lithological layering in sedimentary rocks is very often a prominent weakness direction. Such features can be very persistent and be traced for hundreds of feet. Bedding features carry a B notation.

A bedding feature which is not separated is termed a "Bedding Plane Trace".

Flow Banding
Igneous equivalent of bedding; where directional movement of a fluid causes mineralogical or textural banding. Not necessarily a discontinuity. Equivalent to \(B\) for igneous rocks.

Foliation, Schistosity and Cleavage
Metamorphic layering which should be treated in the same way as bedding, and coded as L.

These features may be closely spaced, and may result from orientation of platy minerals, e.g. micas and hence represent a preferred direction of weakness.

\section*{Vein}

A tabular feature of finite thickness composed of material which differs from the surrounding rock either in grain size or composition or both. Notation V.
"Healed" joints can be classified as veins, and as such are not necessarily planes of weakness.

\section*{3) ORIENTATION}

The orientation of a planar discontinuity is a unique measurement. Figure 1 shows how the orientation of a plane may be described by a vector. The dip direction of the plane from a reference direction and the dip angle from a reference plane describe its orientation. In normal field circumstances the reference direction is True North and the reference plane is horizontal. These references may be changed when mapping in magnetic environments or when logging oriented core from inclined boreholes, see below.

Orientation data is placed in columns 8-12 of the logging sheets.

Figure 1: Orientation of adiscontinuity.

\section*{Surface Happing}

Rock discontinuities are often not planar and the surfaces may be curved or irregular on a large or small scale. This factor causes inaccuracy in the determination of orientation.

A mean orientation can be established for a particular surface area by two methods:
1) A large number of individual measurements on a single surface may be located mathematically and a mean vector computed. This mean vector may then be regarded as the orientation of that discontinuity. Unfortunate\(1 y\) this method may require more than 50 measurements per surface.
2) The estimation of a mean plane may be done by eye. This is the most practical method but can be of doubt ful validity when only a small area of the joint surface is exposed.

Orientation in Magnetic Environment
Where there is a strongly magnetic environment it will not be possible to use a compass to measure the spacial azimuths (dip directions) of the geological discontinuities. It is therefore proposed that a tape be used, stretched out parallel to the bench face as the basic azimuth against which orientations are recorded. The true orientation of this tape should be surveyed and recorded.

All mapping should be performed in the same direction when facing the slope face, and the end of each tape traverse towards which mapping is progressing should be referred to as azimuth øøø" for that unique tape traverse. It is suggested that all mapping proceed from left to right when facing the slope in which case the right hand end of the tape would have an arbitrary azimuth of øøø" for each traverse.

Azimuths relative to the tape can be measured with a standard carpenter's rule.

Core Orientation
When logging oriented core the orientations recorded are shown on Figure 2 and described below.

The core dip angle, \(\boldsymbol{\alpha}\), is between the discontinuity plane and the core axis, and can be measured with a core goniometer, see Figure 3.

Core dip direction, \(\boldsymbol{\beta}\), is the angle around the core from a reference line, usually top of core, to the lowest intersection of the discontinuity plane with the core. All measurements are made clockwise around the core when looking in a downhole direction using a linear protractor, see Figure 4.

Where the dip direction cannot be determined due to loss of orientation for the run, the dip angle with respect to the core axis is recorded, and "999" is noted as the dip direction on the form shown in Figure 11.

Figure 4: Linear protractor.

Orientation is generally lost across a broken or lost core intersection in the run. However, if the core contains a unique constant foliation orientation, e.g. bedding or banding, this can be used to continue the orientation if its orientation has already been ascertained.

\section*{4) DISCONTINUITY INFILLING}

The nature and thickness of the infilling of faults and joints may give important information regarding groundwater conditions, e.g. preferential iron staining on particular joint sets will indicate directions of predominant water flow. Also a weak material infilling will indicate that the infilling and not the host rock will govern the shear strength of the discontinuity.

Common types of infilling with their notation symbols are:
1) Clay = montmorillonite, kaolin, etc; A
2) Iron minerals - limonite, etc; F
3) Calcite; W
4) Chlorite; K
5) Quartz; Q
6) Pyrite; P

This system can be expanded to sutt the needs of specific projects, with a record being kept of the symbols used.

Clean discontinuities can be distinguished by \(C\).
In some instances water may be seen issuing from a particular discontinuity and this should be noted separately. If more than one type of infilling is present each should be recorded in order of priority.

The type of infilling in placed in columns 13 to 15 of the logging sheet, the thickness code letter in column 16 and the presence of water by a \(W\) (wet) or \(D(d r y)\) in column 17.

\section*{5) SURFACE PROPERTIES}

The surface properties affect the shear strength of discontlnuities, and should be assessed subjectively in the mapping program. The assessment may be divided into two factors: shape and roughness.
\begin{tabular}{cl}
Shape & Roughness \\
P Planar & P Polished \\
C Curved & K Slickensided \\
U Undulating (Wavy) & S Smooth \\
S Stepped & R Rough \\
I Irregular & V Very Rough
\end{tabular}

Alternatively, the roughness can be classified according to the Joint Roughness Coeffictent (JRC) described in Chapter 5 of the manual.

Figure 5 shows the distinguishing features of shape and roughness of joints as seen in drill core and in surface exposures. The code letters or numbers describing roughness are entered in columns 18 and 19.

EXAMPLESOF ROUGHNESS PROFILES

A. Rough undulating - tension joints, rough sheeting, rough bedding.
B. Smooth undulating - smooth sheeting, non-planar follation, undulating
\(\mathrm{JRC}=20\)
\(J R C=10\) bedding.
C. Smooth nearly planar - planar shear joints, planar foliation, planar JRC \(=5\) bedding.

Barton's definition of Joint Roughness Coefficient JRC.

Figure 5: Shape and roughness of joints in drl 11 core.

\section*{6) SPACING}

The true spacing is the distance between discontinuities in a set, measured in the direction normal to the planes. Apparent spacing is the spacing between planes measured along a line or traverse at an angle to discontinuity sets. Traverses can be along boreholes, adits, bench faces or exposures. The relationship between true and apparent spacing is shown in Figure 6. The spacing between fractures can be recorded by the code letters shown on Figure 9 which is entered in colunn 20. The same system can be used to record the number of fractures which is entered in column 21.

\section*{7) PERSISTENCE}

Persistence is the length or areal extent of a discontinuity which can be seen or inferred from mapping procedures. This is the most difficult to assess of all the parameters important to geotechnical mapping. Unfortunately persistence is often critical to the design of slopes and underground openings, since it provides an assessment of the amount of intact rock which separates joints of a similar set occurring down or up dip. The areas of intact rock are known as "rock bridges".

\section*{Exposure Flapping}

Persistence may be simply assessed in up to four categories relating to each type of discontinuity when mapping exposed structures, and recorded as a suffix to the notation for discontinuity type (e.g. J1, B2, etc.). The categories are also related to the size of underground opening or exposure height as shown below, and in Figure 7.

Category
1
Greater than 3 m in two directions
2 Greater than 3 m in one direction
3 Less than 3 m in one direction
\(4 \quad\) Less than 1 m in one direction (normally only mapped in critical structures such as bridge abutments).

5
In some instances it may be simpler to scale the measurements to the size of the underground opening or bench. This data is entered in colunn 22 of the logging sheet.

The other factor which is used to assess the persistence of discontinuities is the termination, i.e. the visibility of the ends of the fracture. The following three code numbers, which are entered in column 23, can be used to define termination.
```

$\emptyset$ - neither end of fracture visible
1 - one end visible
2 - both ends visible

```


Persistence cannot be measured from drill core but the relative importance of discontinuities may be estimated using the following scheme:

Category
1

2

3

5

9

\section*{Measurement}

Pre-existing open fracture in rock mass which is continuous across the core.

A drilling induced fracture which occurs along a pre-existing plane of weakness in the rock.

A drilling induced fracture which is not related to any plane of weakness in the rock mass.

A pre-existing open fracture in the rock mass which is not continuous across the core or an intact feature which has been healed.

A trace of a geological feature which does not represent any inherent weakness in the rock mass.

A conservative approach would be to assume that a discontinuity is pre-existing if there is any doubt as to its origin.

\section*{8) OTHER PARAMETERS}

The following are not quantitative measurements recorded directly from mapping or logging techniques on discrete discontinuities, but are used as indecies to assess rock mass characteristics, derivations are described where not self-explanatory:
1) Rock Type
2) Weathering and Alteration
3) Strength or Hardness
4) Recovery or Loss of Core
5) R.Q.D.
6) Fracture Frequency or Index

This data is either recorded as back-up data to the structural mapping program, or in a drilling program, forms part of the core log shown in Figure 11.

Rock Type
Depending on the format chosen for geological data presentation different rock type descriptions are used. The codes used should be recorded during the field mapping program to ensure that maximum usage of the data is possible.

When using written descriptions in geological or engineering logs it has been found that the system described below presents a uniform approach, allowing continuity of description from location to location, and project to project. The following standard sequence of systematic description is proposed:

Weathered state, structure, colour, grain size, rock material strength, ROCK TYPE.

It is considered that the qualifications are more important in core descriptions than the actual rock name and, for this reason, the name is placed last. Such a system is appropriate to an engineering description where classification by mechanical properties is more significant than classification by mineralogy and texture. The following examples are provided for illustrative purposes:
1) Fresh, foliated, dark grey, coarse, very strong, hornblende GNEISS.
2) Moderately weathered, thickly bedded, cream, mediumgrained, strong dolomitic LIMESTONE.
3) Completely weathered, thinly flow-banded, mid-grey, very coarse, porphyritic, kaolinized, weak tourmaline GRANITE.

Various of the qualifying types are detailed in sections below.

\section*{Weathering}

The following system of weathering classification is proposed:
\begin{tabular}{ll}
Fresh (FR) & no visible sign of weathering \\
Fresh jointed (FJ) & weathering limited to the surface of
\end{tabular}

Slightly weathered (SW) penetrative weathering developed on open discontinuity surfaces but only slight weathering of rock material

Moderately weathered (MW)

High weathered (HW)

Completely weathered (CW)
weathering extends throughout the rock mass but the rock material is not friable
weathering extends throughout rock mass and the rock material is partly friable
rock is wholly decomposed and in a friable condition but the rock texture and structure are preserved.

It will be noted that this scheme is broadly based on that development for the Snowy Mountains Authority (Moye 1955), but has been adapted for a general range of rock types rather than simply for granitic rocks for which it was originally devised. In the case of weathered rocks with a significant clay content, the material may exhibit plasticity rather than friability; in consequence, some care may be required in assessing the weathering state of such rocks.

A comparative table of mineralogical, mechanical and appearance characteristics is included as Table 2.1, where it should be noted that various states of weathering are defined by the alteration products of primary constituents of the rock fabric.

\begin{abstract}
Alteration and weathering are both included in the weakening
\end{abstract} assessment.

Strength
The rock strength classifications used, either by code or term, have been derived from a number of sources and are presented with reference to simple field hardness tests shown in Table 2.2. Different mapping and logging requirements will dictate which method of presentation will be used, and the uniaxial compressive strengths appear as a guide for order of magnitude analyses only.

Core Recovery or Loss
This index should be recorded on all core logging forms either as recovery or loss depending on the requirements of the project. Core recovery is determined as the ratio of core recovered to the total drilled run length expressed as a percentage; the value may be recorded on a run by run basis or over a normalized core length. Occasionally core loss is plotted in order to highlight zones of weaker core. From the point of view of most geotechnical drilling it is the core that is hardest to recover which will indicate most clearly the weakest parts of the rock fabric.
R.Q.D.

A refinement of the core recovery system is proposed following the work of Deere et al (1967). It defines the fraction of solid core recovered greater than 4 inches in length as the Rock Quality Designation. It is calculated as the ratio of the sum of the length of core fragnents longer than 4 inches to the total drilled footage oer run. exoressed as a percentage. The core is measured along the cent\&line from fracture to fracture. Fractures parallel to the core axis should be ignored as sampling errors.

In certain cases the index can be recalculated over a normalized footage (for example a bench height) for interpretive use.
R.Q.D. may be used to classify the rock mass following Deere's scheme:
\begin{tabular}{cc}
RQD & Rock Classification \\
\(0=25 \%\) & Very poor \\
\(25=50 \%\) & Poor \\
\(50=75 \%\) & Fair \\
\(75=90 \%\) & Good \\
\(90=100 \%\) & Excellent \\
&
\end{tabular}

This is an invaluable index of a rock mass and may be recorded in a number of ways:
1) When mapping exposures, either a cut slope or in a tunnel, it should be measured as the ratio of the number of fractures per foot of true spacing. It can be measured either per joint/bedding set, or for a rock mass.

\section*{A6-15}
2) For engineering logging it is almost invariably recorded as the number of natural fractures per unit length of core recovered. Depending on the logging requirement, the fracture frequency may be measured for each run or over a normalized footage, and representative sections of core only may be measured in certain circumstances.

It has been found from experience that fracture frequency/index is of most use for surface investigations whereas R.Q.D. holds similar prevalence for underground analyses. It is usual to record only natural fractures in the above assessments and departure from that specification should be recorded.

PART 3 - HAPPING SURFACE AND UNDERGROUND FEATURES
The principles for mapping surface and underground exposures are generally similar, although the underground openings may provide better three dimensional information.

The basic methods should be suitable for all rock types, but the mapping procedures are subdivided into three basic stages:
1) Major Feature Mapping.
2) Detailed Mapping.
3) Specific Mapping of Critical Features.

All attempts to strictly delineate the boundaries of these stages are doomed to failure and these recommendations should only be used as general guidelines. The objective is to initiate procedures which define, and then successively refine, information on those features which will be critical to stability.

\section*{MAJOR FEATURE MAPPING}

The first step is to prepare a plan of the area with grid and magnetic north, if plans at a suitable scale are not available. A scale of \(1: 500\) is the most useful general purpose scale but 1:1000 or 1:250 may be required for certain projects. It is most convenient to record information directly on to a working plan and transfer it to the master plan in the office.

In order to record the location of each feature it is necessary to use a system of reference points with known coordinates. These may be already available from surveys. If not, a special survey will be required, if pacing from known locations is found inadequate.

The location of each feature is measured from a tape stretched between reference points. In an underground opening two tapes may be used, one on either side of the opening. Intersections of major features with the tape(s) can thus be measured and recorded.

The major features should include the following:
1) Faults.
2) Rock type contacts, including weathering and alteration.
3) Fold axes.
4) Typical prominent bedding planes or joint sets.

In all cases the orientation should be measured using a compass or conventional surveying. The nature of infilling and the orientation of any slickensides or displacement of marker beds associated with faults should also be recorded.

The features are relatively large scale in relation to the slope and should be recorded on plans and sections on the same scale as the highway layout plans and sections. The use of transparent overlays is recotnnended for this purpose to avoid

Rock Contact

Syncline

\section*{SYMBOL}
v

Anticline

Fault

Bedding

Joint

Vein

\section*{Lineotion}
v

Figure 8: Symbols for geological features.
confusion by detail. The symbols recommended for recording the major features are shown in Figure 8.

In order that the construction personnel can readily make use of this data, significant geological contacts and major zones of weakness should be marked in the field with colour coded stakes or spray painting.

This general scale of mapping will delineate the structural domains. In the case of metamorphic or volcanic rocks, major faults and contacts will be the main boundaries. Sedimentary rock types may show, in addition, distinct structural domains due to folding.

DETAILED MAPPING
Once the major features have been delineated it is possible to decide which areas should be mapped in detail. The locations of features can be determined from a tape using the same reference points discussed above.

Experience has shown that it is not necessary to map every feature. Indeed, it is often a mistake since it becomes difficult to distinguish major features from minor ones.

This stage of mapping should define the location and the orientation of fold axes. Where tight folding has occurred the amplitude and wavelength of folds should be measured. Since jointing will be associated, in most cases, with the folding, all joints should be related to representative bedding orientations.

The location, orientation, persistence, infilling and surface roughness should be recorded on a simple code form of the type shown on Figure 9. This code form fits into a field note book and enables the data to be easily punched onto cards which can then be read into computer data as input to programs for spherical projection analysis.

The presentation of detailed mapping data can be done in two ways:
1) The more important discontinuities, persistent categories 1 and 2 , can be plotted on the same structural plans as the major features (see "Major Feature Happing") using the symbols presented in Figure 8.
2) Oriented data can be plotted on an equal area projection with different symbols being used for different features.

\footnotetext{
In general, both methods should be used since they complement one another. The plan shows the spatial relationship while the projections define the angular relationships.

Wherever possible, color photographs should be taken of the exposure mapped, regardless of mapping method, as a useful adjunct to the structural data.

Three different methods of detailed mapping are suggested, and detailed below. The particular technique should be pertinent to the specific project.
}

\section*{STRUCTURAL MAPPING CODING FORM}
1. Location, orventation, and number of plenes are numpeic date unit is aphabetic andor numpric, all athert are alphabetic.
2. Surfece typl, line type and rock type we three better mnemonict intiling, water, form, roughnem, and termination are one tetter mnemonic:
3. Hecord all merconce and their full proper descriptrons on e reference theet
4. Lecotion records position within the dets unit or treverse. each dete unit ahould inciude date from within one struetural unit oniv.
B. Thicknems. epecing. End tensth are entered eccordinf to the wize notetion given below

\begin{tabular}{|c|}
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{Orimentron}} & \multicolumn{4}{|r|}{\multirow[t]{2}{*}{wehlmas}} & \multirow[t]{3}{*}{\[
\begin{array}{|l|}
\hline \frac{5}{3} \\
\hline
\end{array}
\]} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \bar{\xi} \\
& \vdots \\
& \\
& \hline
\end{aligned}
\]}} & \multirow[t]{3}{*}{\%} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\[
\underset{\substack{\text { tock } \\ \text { TYPE }}}{ }
\]}} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Location}} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\(\frac{\text { Sursece }}{\text { Trpa }}\)}} & \\
\hline & & & & & & & & & & & & 旁 & & & & & & & & & & & & & & & & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline - & \\
\hline
\end{tabular}

Figure 9: Structural mapping coding form.

\section*{A6-20}

Joint Set Happing
In each structural domain typical discontinuity sets should be mapped for the following parameters (see Part 2).
\begin{tabular}{ll}
1) & Discontinuity Type \\
2) & Orientation \\
3) & Infilling \\
4) & Surface Properties \\
5) & Spacing \\
6) & Persistence
\end{tabular}

In the case of typical joint and bedding sets at least 50 sample measurements should be taken per set. In some rock types and locations definitive sets may be difficult to delineate, under these circumstances only those features which will affect the stability of the slope should be mapped. This would include those features which are more Persistent, and those of adverse orientation.

\section*{Window Mapping}

The "window" mapping technique involves the detailed mapping of representative segments or "windows" of a fixed size, spaced at fixed intervals in the exposures. The intervening areas are reviewed for similarity of structure with the adjacent "windows", and any variations or major structural features are mapped in detail. This form of mapping can be combined with standard geological (rock type/grade) mapping with little additional time requirements.

In each "window" the mean orientation for each discontinuity set is recorded, either as several individual joint measurements, or as the mean of several measurements. The characteristics of the discontinuities of the sets visible within the window are also noted.

The sizes of the window and the intervening section of unmapped rock face should be chosen to suit the project. The following examples are taken from recent projects where window mapping was used:
\begin{tabular}{ll}
1) Slopes & 30 ft . Windows every 150 ft . \\
2) Tunnels 10 ft . Windows every 50 ft . on both wall s
\end{tabular}

\section*{Line Uapping}

An alternative for isolating sample areas to be mapped is to use the line sampling method. This involves recording every structural feature which intersects a scan line which may be painted on a rock face or be represented by a tape stretched along a face or tunnel wall.

One advantage of this technique is that line sampling corrections may be applied to the data should detailed statistical analysis be required. However, it can be a tedious routine for mapping large areas.

\section*{SPECIFIC MAPPING OF CRITICAL FEATURES}

In some instances it will be necessary to further refine the information if preliminary analysis has shown a particular

\section*{A6-21}
set(s) of features to be critical to stability. Each joint set should be treated indeoendentlv. In addition to all the factors outlined in the previous sections, the apparent spacing between the joints of the same set should be measured with a minimum, mean and maximum value. The true spacing can be computed from the apparent spacing along a particular direction if the orientation of the mapping line is known (see Figure 6 in Part 2).

In order to estimate the shear strength of critical discontinuities, it may be necessary to make detailed shape and roughness measurements on the surfaces, and strength tests of infilling materials may be required.

PRIORITY IN GEOTECHNICAL MAPPING
The preceding sections are a guide and each geologist or engineer should realize that some flexibility is required. In many cases it may be possible to merge various stages.

The following factors should be regarded as the order of priority:
1) The orientation and location of major faults and weak zones and the infillings.
2) The orientation and location of contacts of major rock types.
3) The orientation of persistent discontinuities.
4) The spacing of persistent discontinuities.
5) The infilling of discontinuities.
6) The surface properties of features.

\section*{PART 4 - GEOTECHNICAL MAPPING FROM DIAMOND DRILL HOLES}

Diamond core drilling is one of the most expensive forms of geological data collection, and generally forms the major expenditure in an exploration program. In consequence, it is essential that the maximum amount of data is obtained from the drill core, in addttion to putting the resulting hole to maximum use, e.g. by measuring water levels, and permeability; installing piezometers, etc.

Drill core can be a valuable source of geotechnical and engineering information pertaining to rock conditions at depth. The amount and type of geotechnical detail recorded will vary depending on the project and the individual hole. As a result, data recording can vary from a summary log indicating the basic generalities of the rock characteristics, to a detailed log of the orientation and nature of every discontinuity.

It is valuable to photograph each core box (35 mn color slides are preferred). These photographs provide a permanent record of core condition from which considerable information of geotechnical value can be obtained later.

All logs should be filed with a cover sheet, see Figure 10 , giving relevant drill hole data such as collar coordinates, borehole orientation, borehole survey data, length, core size, etc., plus any relevant information from the driller's logs.

Accurate discontinuity orientation is only possible when the logged orientations are corrected for hole deviation at close intervals along the hole. This is best performed by a computer program which interpolates absolute hole orientation between survey points, and corrects individual readings accordingly. Hole surveys should be taken every 100 to 200 ft .

Drilling Information
Problems encountered in the drilling of the hole frequently tell more about the ground conditions than can be obtained from logging of the recovered core. Thus, a geotechnical logging method should contain the following information, in addition to a record of geological features.

A summary of the drilling events, based on verbal conversation with the drillers, should be noted. This summary enables a reconstruction of events that allows the engineer to see exactly what occurred in the drilling of the hole and also may aid in the interpretation of core condition. Items such as the use of bentonitic mud; the rods becoming stuck or hard to turn; requirement for replacement of core catcher or bit, including specific type; deviations in usual drilling techniques; etc., all add to this documentation and serve to produce a log that can be used in the interpretation of the ground conditions.

This information should be recorded on a driller's sheet. If and when zones of water loss are encountered, the specific depth should be noted and shown on the log; a general statement should be made if none are encountered. Driller's data sheets, with water levels. can be used on each core hole to provide additional information.

Figure 10: Drill hole cover shet.

Rubblized zones within the hole that cave should be given special emphasis and noted on the log. If the caving ground is brought to the surface in the barrel, a description of it should also be noted (sand size, gravel size, etc.).

Areas that require grouting in order to continue coring should be noted and the log should indicate the specific zones grouted, how much grout was used, and the hardness and description of the grout core.

\section*{GEOTECHNICAL LOGGING}

The objective of a geotechnical log is to record information from the drill hole that reflects the condition of the ground penetrated. This information comes both from the drilling process and from the recovered core.

The data recorded should be relevant to the scope of the project; the logging detail and format for a tunnel should reflect the problems of underground excavation and support; data obtained from holes drilled for slope investigations should reflect the larger scale of a slope.

The information should also be directly useful in the interpretation of either the mechanical or hydrological properties of the rock mass. Geologic information (that which enables interpretation of the spatial variability of the several parameters) should be recorded and handled in the manner preferred by the responsible geologist(s). There is an overlap in that alteration, for instance, will affect the strength of the rock materials. Probably the most important aspect of the entire geological/geotechnical investigation is the definition of the fault population as faults frequently control water migration and strength properties. Typically geotechnical problem areas or failure situations in rock materials will directly relate to the occurrence of faults.

The following sections describe oriented core and geological engineering logging methods and show typical logging sheets. The parameters that are recorded are all described in detail in Part 2 of this manual.

\section*{ORIENTED CORE LOGGING}

Where the core can be successfully oriented, valuable information can be obtained on the spacial relationships of the natural discontinuities in the rock. Because of the complexity of reducing the resulting orientation for the orientation of the drill hole, it is recommended that the oriented data is recorded in a format suitable for direct key-punching. This will permit data reduction and subsequent analysis usually by stereographic projection.

A Structural Mapping Coding Form (Figure 11) permits recording of details regarding the orientation and nature of the discontinuities. The data are recorded as follows:
1) Job Number

This is unique to the project.

STRUCTURAL MAPPING CODING FORM
\begin{tabular}{|c|}
\hline \multicolumn{4}{|l|}{Lentaunit} & & B15 & & & 16 & 121 & & \% & & & & \(!\) & ! & & & & & & & \\
\hline & 915 & & & B & & & 3 & 2 & 2 & & F & & & & PR & \(R\) & & & & & & & \(B C \mid B\) \\
\hline & 95 & 6 & & & & 6 & 4 & 0 & 4 & 7 & W & & & & & & & & & & & & \\
\hline & 95 & 7 & 7 & 1 & 2 & 6 & 7 & 0 & 3 & 2 & C & & & & ps & & & & & & & & \\
\hline & 95 & 57 & B & 3 & 9 & 3 & 5 & 2 & 2 & 7 & & & & & \(\bigcirc\) & & & & & & & & \\
\hline & 96 & 0 & J & J & 2 & 6 & 3 & 0 & 3 & 8 & - & & & & & \(R\) & & & & & & & \\
\hline & 96 & 2 & 2 & J & & 5 & 8 & 0 & 5 & 4 & WP & & & & P & & & & & & & & \\
\hline & 6 & 3 & 3 & 89 & & 3 & 7 & 2 & 2 & 3 & & & & & p & & & & & & & & \\
\hline & 96 & 4 & & J & & 6 & 2 & O & 3 & & C & & & & CR & & & & & & & & \\
\hline & 96 & 9 & , 8 & 8 & 2 & 3 & 5 & 2 & 2 & 4 & C & & & & P 5 & & & & & & & & \\
\hline & \\
\hline & 97 & & B & B & 9 & 3 & 4 & 2 & ' & 9 & & & & & \(\bigcirc\) & & & & & & & & \\
\hline & 97 & 15 & & J & & 8 & 7 & 3 & 1 & 2 & C & & & & P & & & & & & & & \\
\hline & 97 & 76 & & 1 & & 0 & 3 & 1 & 3 & 5 & 5 & & & & PV & & & & & & & & \\
\hline & 97 & 7 & B & B & 9 & 3 & 0 & 2 & 2 & 9 & & & & & P & & & & & & & & \\
\hline & 97 & 9 & U & 1 & 4 & 1 & 8 & 1 & 4 & 2 & 5 & & & & \(\bigcirc\) & & & & & & & & \\
\hline & 98 & 2 & 2 & 1 & & 6 & 2 & 0 & 2 & 8 & W 0 & & & & \(p\) S & & & & & & & & \\
\hline & 98 & 4 & B & B 9 & 9 & 3 & - & 2 & 3 & 3 & & & & & \(\bigcirc\) & & & & & & & & \\
\hline & 98 & 5 & & 12 & & 7 & 3 & 0 & 4 & 5 & C & & & & PR & \(R\) & & & & & & & \\
\hline & 98 & 7 & & J & & 6 & 3 & 0 & 4 & 3 & C & & & & 5 S & & & & & & & & \\
\hline & 98 & 9 9 & & 8 & & 3 & 7 & 2 & 2 & 4 & & & & & P & R & & & & & & & \\
\hline & 98 & 89 & & 12 & & 6 & 2 & 0 & 4 & 2 & w & & & & PR & & & & & & & & \\
\hline & 99 & 1 & & J & & 7 & 2 & \(\bigcirc\) & 4 & 9 & \(P\) & & & & P \(P\) & & & & & & & & \\
\hline & 99 & 2 & F & F & & \(\bigcirc\) & 7 & 3 & 1 & 7 & D 5 & & & & & \(\cdots\) & & & & & & & \\
\hline & 9. & 2 & J & 1 & 3 & 9 & 0 & O & O & 0 & 6 & & & & & & & & & & & & \\
\hline 10 & \(\bigcirc\) & 8 & & 11 & & 6 & 7 & 9 & 9 & 9 & Wo & 5 & & & Ps & & & & & & & & DOL \\
\hline 10 & \(\bigcirc\) & 9 & & J & & 4 & T & 9 & 9 & 9 & P15 & & & & & & & & & & & & \\
\hline 10 & 01 & 7 & B & 89 & & 3 & 1 & 2 & 2 & 5 & & & & & P & & & & & & & & 1 \\
\hline 10 & 01 & 9 & & J & 2 & 7 & 3 & O & 3 & 7 & C & & & & \(p R\) & & & & & & & & BCB \\
\hline & 02 & 3 & & B 1 & & 3 & 3 & 2 & 2 & 4 & w & & & & O5 & & & & & & & & \\
\hline & 02 & 5 & J & 14 & & 6 & 2 & \(\bigcirc\) & 4 & 5 & w & & & & P & & & & & & & & \\
\hline & 02 & 7 & \(J\) & J & 2 & 7 & 3 & \(\bigcirc\) & 5 & 7 & \(\bar{C}\) & & & & & \(\square\) & & & & & & & \\
\hline & \(\bigcirc 2\) & 8 & & 89 & 9 & 3 & 2 & 2 & 3 & 1 & & & & & \(\stackrel{\sim}{P}\) & & & & & & & & \\
\hline 10 & 03 & 4 & & B 9 & & 3 & 4 & 2 & 2 & 6 & & & & & \(\bigcirc\) & & & & & & & & \\
\hline 10 & 03 & 39 & & 82 & & 3 & & 2 & 1 & 8 & \(\bar{C}\) & & & & - & & & & & & & & \\
\hline & 04 & 1 & & & & 1 & 7 & & 2 & 7 & \(C\) & & & & & & & & & & & & \\
\hline & 04 & 5 & & 89 & & 3 & & 2 & 2 & 1 & & & & & \(\bigcirc\) & & & & & & & & \\
\hline & 04 & 6 & & J & & 6 & 2 & O & 7 & 2 & C & & & & \(\bigcirc \mathrm{P}\) & & & & & & & & \\
\hline 10 & 04 & 7 & J & J & 2 & 6 & 4 & 0 & 2 & 8 & C & & & & \(\bigcirc 5\) & 5 & & & & & & & \\
\hline 1 & 04 & 7 & \(\checkmark\) & 1 & & 7 & 2 & O & 4 & 7 & & & & & \(\bar{\square}\) & & & & & & & & \\
\hline & 04 & 9 & F & E1 & & 1 & 4 & 1 & 3 & 7 & 5 W & & & & ค K & & & & & & & & \\
\hline & 04 & 19 & & ग & & 9 & 0 & O & 0 & \(\bigcirc\) & \(\bar{C}\) & & & & & & & & & & & & \\
\hline & 05 & 1 & & 8 & & 3 & 9 & 2 & 2 & 1 & c & & & & & 5 & & & & & & & \\
\hline & 015 & 2 & I & J & 1 & 5 & 3 & O & 3 & 8 & W & & & & Ps & & & & & & & & +1t] \\
\hline
\end{tabular}

EXAMPLE ONLY

Figure 11: Oriented core logging format.

\section*{A6-26}
2) Datai Unit

U p:07 characters to detail, for example, borehole number DD77803.
3) Location

Recorded to the nearest \(\emptyset .1 \mathrm{ft}\). in columns 1 to 4 . All other columns are filled with details of parameters described in Part 2 of this manual.

GEOLOGICAL ENGINEERING LOGGING
This logging technique is often performed immediately the core is recovered and, consequently, usually requires full-time rig supervision. It can be carried out with oriented core logging.

Most of the logging form (Figure 12) is self-explanatory, the details of wrameters recorded being included as Part 2 of this manual. Other information is detaiied below.
1) Type of Drillinq
usually "Rotary Core" followed by the qualifying drilling medium "Mudflush" or "Waterflush".
2) Reference Elevation

Definition of the datum from which down-hole depths are measured, e.g. drill floor.
3) Drilling Progress

A line to indicate the end of run footage, with the down-hole depth recorded above the line. Data and shift (AM or PM) should also be recorded below the footage line at shift changes.
4) Rate of Advance

Time per unit length of hole drilled. Filled in as a histogram, and shaded to highlight runs of slow drilling.
5) R.Q.D. and Core Recovery

Plotted graphically for better definition of possible weak zones. These are calculated for the core run interval shown.
6) Depth

The short lines usually represent \(\mathbf{1 / 2}\) ft. increments; each 5 ft . 1 ine should be labelled. Down-hole depths at major rock type contacts should be included as accurately as possible and a line drawn across the rest of the log.
7) Reduced Level

After the hole has been surveyed this column can be completed with details of elevations, rather than down-hole depths, for major contacts.
8) Water Level

A line is drawn to indicate shift change hole depth and a record made of the fluid level-in the hole, measured from the reference elevation.
9) Test Results

Details of sample location, sample type, Atterberg test results, penetration tests, etc. are included in this column.
10) Bed/Fol

Representative inclinations of bedding or foliation with respect to the core axis are recorded.
11) Instrumentation and Legend

Both columns are for graphic representation of data. The former is used to represent in-hole installations, for example piezometers, with details of grout, fill, cave, etc. The latter is a geologlcal legend, and should comply with a standard, either local to the project or following A.G.I. recomendations.
12) Description

The escriotion follows the procedure outlined in Part 2, Section'1 with major rock unit descriptions running across the whole column, and minor details, with footages, being indented 1 cm from the left.
13) Remarks

This space is used for indications of casing depths, hole surveys, zones of caving, etc.

PART 5 - GEOTECHNICAL SAMPLING
Most field programs undertaken for the collection of geological data also provide an ideal opportunity to assemble geotechnical data required for slope design projects or other engineering problems. Various mechanical indices can be derived and samples can be taken for laboratory testing at a later date. This part of the manual briefly describes techniques that can be used to collect samples for laboratory testing.

\section*{GEOTECHNICAL SAMPLING}

Some. but by no means all, of the samples used for strength testing are obtained from borehole core. The special drilling techniques required to recover these samples are discussed in Part 8 but no mention is made of the preservation of the core for testing.

The information recorded on the geotechnical log becomes very useful when the classification can be "calibrated" with labora-tory-determined strength parameters. Thus, enough core samples suitable for testing should be preserved, representative of each rock type, alteration state and rock quality class. If these are carefully described (photographed if possible), preserved and stored, there is no immediate requirement to do the testing.

In addition to the categories above, samples should also be taken of core sections separated by gouge zones.

The sample length should be at least 2-1/2 times the core diameter.

When clean joints in hard rock specimens have been collected for shear testing, it is probably satisfactory to transport these to the laboratory or testing station in a normal core box. If it is considered that excessive movement may damage the surfaces, the two pieces of core can be taped or wired together.

For the weaker materials, and the sections of harder core with gouge zones, it is useful to retain the sample's natural moisture content. For this reason careful preservation of the sample must be ensured. At each stage of the wrapping procedure the sample should be labelled with:
```

Sample number, including drill hole identification;

```
Depth interval, and Down-hole direction.

In addition an index card, preferably in duplicate or triplicate, should be filled in with all of the above information plus a geological description.

The selected samples should be wrapped in two layers of Saran wrap (or similar), and two layers of aluminum foil. They may be waxed should particular conditions indicate that the sample will further dry out. The lengths of wrapped core can then be placed in a core box, with suitably placed spacers, for transportation.

The samples in the core box can be protected from desiccation and damage in transit by pouring a suitable quantity of mixed,
two-part expanded polyurethane foam to completely enclose each individual sample in the box. This method preserves both the sample's condition and moisture content for later testing in the laboratory.

Index cards should be tied to each sample in the foamed core box, and copies kept on site and sent to the laboratory. In this way the sample does not have to be exposed in order to identify Its various characteristics.

Samples for shear testing are also collected by methods other than core drilling. The most obvious of such methods is to use a geologist's hamer to chip the required sample out of the rock mass. This will sometimes work but a great deal of time and energy can be expended in attempts to collect an "undisturbed" sample.

In soft materials such as coal measure rocks, the National Coal Board in England has successfully used a chain saw fitted with a tungsten-carbide ttpped chain to remove samples for shear testing.

\section*{A6-31}

\section*{PART 6 - PHOTOGRAPHIC TECHNIQUES}

Color photographs are an invaluable aid to the interpretation of geological and geotechnical data. A clear scale should always be included in the picture since one project may require photography of the geology in varying detail, e.g. pit faces and core, or underground drifts and stopes.

It is preferable to use a diapositive transparency film for 35 \(\boldsymbol{m m}\) color slides. The use of electronic flash or photoflood units permits the photography to be independent of external light conditions.

The color slides should be indexed and filed in suitable trays or boxes. When required, they can be projected on a screen or alternatively examined with a hand lens on a light table. For scale measurements the photos can be projected onto the rear of a ground-glass sheet, e.g. through a light table, and the size adjusted to natural scale, see Figure 6.1.

\section*{EXPOSURE PHOTOGRAPHY}

\section*{Slopes}

Geological interpretation from slope photography may be carried out in varying detail depending on the complexities of the project.

Aerial photography is often used at the beginning of a project in an attempt to delineate large-scale structures, such as folds, major faults and major rock contacts.

Photography can be used by the engineer to show rock contacts and some joint set orientations. In addition, areas of potential stability problems can often be isolated from a detailed study of such photographs.

Photographs should be taken as a routine compliment to face mdpping. It is often useful to carry a wide-angle lens for use when berm widths restrict the amount of space available. The section of face to be photographed should be marked with spray paint to delineate, for example, windows or fracture sets mapped, and should also show some reference information to assist in filing the photograph. A suitable scale may also be worked directly into the rock. Close-ups of critical dreds may also be warranted using geological hamers, pocket knives or coins for scale depending on the detail in the photograph.

\section*{Tunnels}

A different set of conditions are encountered when photographing exposures underground. Often the tunnel walls are covered in dust or mud and, prior to mapping or photography, an attempt must be made to clean off the rock. For drifts and ddits less than about 15 ft . wide, a short focal length lens should be used, e.g. 28 mn . In this case it should be borne in mind that most standard flash units will not illunlnate as wide an angle as the lens will cover and suitable adaptations, like photofloods, may be needed. The wall should be marked to show the area mapped, its location and sometimes each discontinuity plane mapped.

The most successful technique for underground photography is to mount the camera on a tripod and then use the flash a number of times to evenly illuminate the face from different positions. Experience will give indications as to the correct exposure settings.

CORE PHOTOGRAPHY
Color photographs of drill core provide a permanent record of the core condition upon recovery, and hence can be an invaluable aid to the interpretation of ground conditions. The photographs show detail which cannot be easily recorded on drill logs and they can be filed for ready reference by both geologists and engineers.

Even with a good camera, where possible core should not be split until the film has been developed and satisfactory photographs obtained.

All core photos should include ample, clear identification of hole number, footage, and the core direction (way up). In addition, it is essential that core be photographed dry.

A 28 mm , wide-angle lens has proved to be most convenient when photographing core. A suitable frame can be constructed of dimensions to suit the size of the core boxes and the width to height ratio of the 35 mm transparency. A title block should be included to indicate project number and name, drill hole number and footage interval. A meter scale should also be shown.

Subdued daylight provides the best lighting for core photography and direct sunlight should not be used. Flash or photofloods may be needed in adverse natural lighting conditions in which case different film requirements must be observed with regard to flash or floodlamp type. Regardless of the lighting system used, consistency is of the utmost importance for interpretation of the core slides, as similar colors will be recorded differently in varying lighting conditions.

\section*{PHOTOGRAMETRY}

Although not yet in wide use, photogrammetric methods offer considerable advantages in the interpretation of photographs of exposed surfaces.

Various different methods can be used to produce a stereoscopic model from which coordinates may be measured to an accuracy of about 1 in 5,øøø. The field set-up requires that the rock face has targets painted on it for photogranxnetric measurement.

For simpler stereoscopic viewing of slope or underground exposures there Is a stereo attachment for a Pentax camera which splits the field of view and produces a negative with a double image.

A variety of borehole techniques and drilling equipment may be used to gain further data useful in the engineering assessment of a particular site. They include methods of recovering the maximum amount of intact core, methods of absolute orientation of that core, and down-hole logging techniques as described below:
\begin{tabular}{ll}
1) & Triple tube core barrel \\
2) & Craelius core orientation \\
3) & Christensen-Huge1 orientation \\
4) & Sperry Sun Single Shot camera \\
5) & Borehole periscope and camera \\
6) & Down-hole geophysics
\end{tabular}

Manufacturers should be referred to for greater details.

\section*{STRUCTURAL DRILLING}

The requirements for structural drilling are somewhat more stringent than those for normal exploratory drilling. The aim is not only to recover a sample of the rock material but to recover a sample of the rock mass complete with discontinuities. This means that each piece of core must be recovered in its correct order.

It is essential for detailed logging to lay out the core in a \(V\)-shaped guide rail. The core can be fitted together and depths marked at regular intervals. The time taken to do this will be amply repaid by speed of mapping.

Positive incentives for skill and motivation of the drillers are required and for this reason footage bonuses must be avoided.

The absolute cost of this type of drilling will be somewhat higher than that of exploration drilling. However, the cost must be viewed in the light of the additional information obtained.

\section*{triple tube core barrel}

On all engineering/geotechnical drilling programs, maximum intact recovery of core is essential. It is often the soft or broken zones which will play a major role in stability problems, and it is these zones that are most difficult to recover. The Longyear \(Q-3\) series triple tube wireline core barrel has been found, after extensive field proving, to be the most effective and reliable coring method.

Regular \(Q\) series wireline barrels can easily be converted to triple tube core barrels and all necessary parts can be ordered in either 5 or 10 ft . sizes. Instead of a simple double tube set-up, in which the core is usually hammered from the core tube, a third tube is added, split lengthwise and nested in the inner tube. Its inside surface is plated with hard, low-friction chrome for smooth core entry. Coring with the triple tube barrel proceeds in the usual manner and the core laden inner tube assembly is retrieved through the drill string. The core lifter and spring case is removed and the split tube is hydrau-
lically pumped from the inner tube. One-half of the split tube is carefully lifted off and the core can be inspected in a virtually undisturbed condition prior to transfer to the core box.

The combination of a step-type lifter case and face discharge diamond coring blt helps eliminate core erosion particularly when drilling In soft conditions. A special brass piston with an 0 -ring seal is used to extrude the split tube, incorporating a pump-out group designed to utilize the rig's grout pump.

The split tubes are manufactured in paired sets and matched numbers should always be used together. The walls of the tubes are fairly thin and, as they can easily be damaged through negligence, spare sets of splits should always be available and securely stored. Damaged splits are useful for carrying core which can then be transferred from split tube to core box with little or no disturbance.

\section*{CORE ORIENTATION}

The dip and dip direction of discontinuities are most important in slope stability evaluations. Consequently, however successful a drilling program has been in terms of core recovery, the most valuable information of all will have been lost if no effort has been made to orient the core.

\section*{Relative Orientation}

One approach to this problem is to use inclined boreholes to check or to deduce the orientation of structural features. For example, if surface mapping suggests a strong concentration of planes dipping at \(30^{\circ}\) in a dip direction of \(1 \mathbf{3 0}^{\circ}\), a hole drilled in the direction of the normal to these planes, i.e. dippIng at \(6 \varnothing^{\prime \prime}\) In a dip directlon of \(310^{\circ}\), will intersect these planes at right angles and the accuracy of the surface mapping prediction can be checked. This approach is useful for checking the dip and dip direction of critical planes.

Alternatively, if two or more non-parallel boreholes have been drilled in a rock mass in which there are recognizable marker horizons, the orientation and inclination of these horizons can be deduced using graphical techniques.

\section*{Absolute Orientation}

A second approach is to attempt to orient the core itself and, while the techniques available abound with practical difficulties which are the despair of many drillers, these methods do provide some of the best results currently obtainable. In fact, the greatest possible service which could be rendered to the rock engineer by the manufacturers of drilling equipment would be the production of simple core orientation systems.

Craelius Core Orientator
One of the best core orientation devices is the Craelius Core Orientator manufactured by Atlas Copco. It consists of a metal holder, of the same diameter as the core, which contains six movable pins. It is clamped in the front of the core barrel and lowered into the hole. Its orientation is fixed by the
orientation of the rigid core-barrel or by a simple marker within the device. When the six pins come into contact with the end of the hole, where the core will usually have broken off or parted on an inclined surface, these pins take up the profile of the core stub. The pins are locked in place and the device released to move up the core-barrel as driliing proceeds. When the core is removed, the core orientation tool is matched to the upper end of the core and the first piece of core is oriented with respect to the known orientation of the device at the time of the fixing of the pins. Provided that good core recovery has been achieved, it should then be possible to reconstruct the core which is then oriented with respect to the first piece.

A technique currently being tested as a means of eliminating shortened drilling runs and drilling difficulties is to lower the craelius on the wireline overshot, take the impression of the core stub on the pins, and then remove the craelius prior to drilling the run. In this wav a quick check can be made to ensure the-device has operated correctly and the drilled run can then be of the standard 5 or 10 ft . This is most useful for taking further orientations since the drill rods may be broken at the same place each run without pulling the diamond bit back from the end of the hole too far.

For a detailed review of both the overall planning of an oriented coring program and step-by-step procedures for inspecting, maintaining, adjusting and using the craelius core orientator the reader is referred to the Craelius Manual.

Christensen-Huge1 Orientation
An alternative method is used with the Christensen-Huge1 core barrel. Three tungsten carbide points scribe the core continuously while coring. The reference marks are then oriented absoluteiy by a magnetic, or gyroscopic survey instrument mounted in the core barrel. This technique is most successful when the ground being drilled is hard and non-magnetic.

The Christensen-Huge1 manual should be referred to for details of this orientation method.

\section*{HOLE SURVEYING}

An integral part of any oriented core logging program is hole surveying. It is essential that the plunge and trend of the hole are known at enough intervals to interpolate the exact deviation of any depth. Golder Associates has developed a computer program which will handle this deviation interpolation. The most commonly used survey tools are the single- or multishot camera magnetic surveying instruments, (Eastman and Sperry Sun are most commonly used) the Tro-Pari Surveying instrument, and the acid test.

\author{
Sperry Sun Single Shot
}

As an example of the photographic methods available a description of the Sperry Sun single shot is given. This system can conveniently be used for hole surveying when the Craelius core orientator is being used for core orientation.

The single shot is a magnetic survey instrument which is used to obtain records, on film, of the inclination and direction of inclination (or plunge and trend) at various depths in a borehole. The presence of steel will obviously affect the compass, and non-magnetic rods are used to hold the instrument below all casing and drill rods. The inclination unit is a form of inverted plum bob which is combined with the magnetic compass into a single unit available for a number of angles of plunge. The borehole orientation indicated by the compass-angle unit is recorded on a film disc when a preset timer illuminates 2 small lamps in the body of the instrument. Special loading and developing tanks permit handling of the photographic discs without the necessity of a darkroom.

It has been found from extensive field experimentation that hole surveys should be taken every 100 to 300 ft . and more frequently when the deviation exceeds \(1^{\circ}\) in \(10 \emptyset \mathrm{ft}\). The delay caused in taking the survey, usually about 30 minutes per shot, is easily compensated by the additional information available from a well surveyed hole.

The single shot camera must be retrieved and reloaded after every shot. This feature is the only major difference compared to the multi-shot camera which is preloaded with four film discs, preset at different time intervals to allow hole surveyings at several depths without removal of the instrument.

\section*{Tro-Pari Surveying Instrument}

The Tro-Pari Borehole Surveying Instrument comprises a unit mounted in gimbals and is provided with a clockwork mechanism to clamp a compass to indicate trend and simultaneously to clamp the unit in its plumb position to indicate plunge.

By means of a timing ring suitably calibrated in five-minute divisions, the unit may set to lock after a lapse of time sufficient to allow the placing of the instrument at the desired point in the drill hole where readings are to be taken. The maximum time lapse obtainable with the instrument designed for use in E or A size holes is 1 hour \(3 \emptyset\) minutes which is considered to be ample time to lower to the greatest depths that may be drilled with this size of equipment. A larger adaptor has been developed for larger diameter holes such as \(B\) and \(N\) sizes and a correspondingly greater time lapse provided for.

Acid Test
This method is the most basic of all surveying techniques and will give a measure of hole inclination only. It is taken as a standard practice in most drilling companies and all drillers are familiar with the test.

Surveying drill holes for inclination is based on the solubility of glass in hydrofluoric acid. A glass vial or bottle is partially filled with a 4 percent solution of dilute hydrofluoric acid and lowered to the desired position in the hole in a special case, called a clinometer. The clinometer must have joints that are water-tight under heavy pressure, otherwise the glass tube will be crushed.

By leaving the clinometer in position for the proper length of time a line is etched along the surface contact of the acid and inside wall of the tube. The angle of this etched line with the long axis of the tube, read with a protractor, gives the inclination of the drill hole at the depth tested. The angle, as read, must be corrected for error due to capillary attraction within the tube.

Several tests may be made at the same time by inserting clinometers at the desired intervals in the string of drill rods. Tests are ordinarily made at intervals of 30 m to 100 m , depending on depth of hole.

As soon as the clinometer is removed from the hole, the bottle is emptied and washed. A tag showing job number, hole number, depth of test and date should be inserted in the bottle for later reference.

\section*{OTHER BOREHOLE METHODS}

The following types are avallable but due to a number of factors, are at best only reliable when used as an adjunct to core logging for geological data collection purposes.

\section*{Borehole Periscope}

This is an optical device wich transmits an annular image of the borehole wall through a series of lenses and prisms to the surface. It is located in a series of connected rigid pipes. This instrument is limited to a depth of 30 m but has the advantage that no electronics are involved and orientation is directly measured from a reference line on the rigid pipes.

\section*{Borehole Cameras}

Both the television and colour multiple shot types are available. Our experience is that these instruments are generally unreliable and difficult to maintain. The capital cost is currently in excess of \(\$ 50,000\) and a further disadvantage lies in the difficulty of obtaining absolute orientation (by either magnetic or gyroscopic methods). However, it must be admitted that, in the hands of specialist operators, these instruments can provide very valuable information. It seems more than likely that, with developments in the field of electronics, better and more reliable instruments of this type will become available in the years to come.

\section*{Impression Packer}

The impression packer is an inflatable rubber tube, the outside of which is coated with a soft, wax-like film. The tube is lowered down the hole on the wireline and inflated against the side of the hole so that fracture lines in the rock are impressed on the wax film. The tube is deflated and pulled from the hole and the orientation of the instrument is determined from a compass set tn its base. The dip and strike of fractures can be determined from the inclination of line in the film. This is a simple and relatively inexpensive means of orienting fractures in drill holes.

Geophysical Methods
These methods were largely developed for the oil industry but have varied applications within other fields of mining. They are found to be most useful when "calibrated" by comparing the geophysical signature with the drill core and logs from some holes. Geophysical surveying is usually handled by the client directly and sub-contracted to a logging outfit.

The methods currently used Include:
Gamma Ray neutron logging
Density logging
Resistivity and Self-Potential logging
Seismic logging
The civil engineering profession has a great deal to learn from the oil industry in this area of borehole interpretation, and other well logging devices such as the Televiewer are bound to find greater applications in site investigation in the future.

\section*{Appendix 7}

\section*{APPENDIX 7}

\section*{Computer program for slope stability analysis}

\section*{a) General two-dimenslonal analysis (BASIC)}

PREFACE

\section*{SARMA NON-VERTICAL SLICE STABILITY ANALYSIS}

Copyright - Evart Hoek, 1985. This program is one of a series of geotechnical programs developed as working tools and for educational purposes. Use of the program is not restricted but the user Is responsible for the application of the results obtained from this program.

\title{
GENERAL THO-DDMENSIONAL SIOPR STABILITY ANALYSIS
}

By Evert Hoek
Colder Associates. Vancouver, Canada

\section*{INTRODUCTION}

The following analysis, originally published by Sarma (1979) and modified by this author, is a general method of limit equilibrium analysis which can be uaed to determine the stability of slopes of a variety of shapes. Slopes with complex profiles with circular, non-circular or planar sliding surfaces or any combination of these can be analysed using this method. In addition, active-passive wedge failures such as those which occur in spoil piles on sloping foundations or in clay core dan embankments can also be analyaed. The analysis allows different shear strengths to be specified for each slice aide and base. The freedom to change the inclination of the slice sides also allows the incorporation of specific structural features such as faults or bedding planes. External forces can be included for each slice and submergence of any part of the slope is automatically incorporated into the analysis.

The geometry of the sliding mass is defined by the coordinates \(X T_{1}, Y T_{i}, X B_{i}, Y B_{i}, X T_{i+1}, Y T_{i}+1\) and \(X B_{i} \mathcal{I N}_{1}, Y B_{1}+1\) of the corners of a number of three or fouraided elements as shown in figure 1. The phreatic surface is defined by the coordinatea \(X W_{1}, Y W_{1}\) and \(X W_{i+1}, Y W_{1+1}\) of its intersection with the slice aides. A closed form solution is used to calculate the critical horizontal acceleration Kc required to induce a state of limiting equilibrium in the sliding mass. The static factor of safety \(F\) is then found by reducing the shear strength values Tan \(\phi\) and \(c\) to \(T a n \phi / F\) end \(c / F\) until the critical acceleration \(K c\) is reduced to zero.

In order to determine whether the analysis is acceptable, a check is carried out to aaaeaa whether all the effective normal stresses acting across the beses and sides of the slices are positive. If negative stresses are found, the slice geometry or the groundwater conditions must be changed until the stresses are all positive. An additional check for moment equilibrium is described but it has not been incorporated into the program listed at the end of the paper because it involves a significant increase in computational effort and because it is seldom required for normal slope stability problems.

\section*{GBONIPTRICAL CALCULATIONS}

The geometry of the ith slice is defined in figure 1 . Note that the value of the \(k\) coordinate should always increase from the toe of the slope. Assuming that \(Z W_{1}, 61\) and \(d_{1}\) are available from the previous slice:
\[
\begin{align*}
& d_{1+1}=\left\{\left(X T_{1}+1-X B_{1+1}\right)^{2}+\left(Y T_{1+1}-Y B_{1+1}\right)^{2}\right\}^{1 / 2} \tag{1}\\
& \delta_{1+1}=\operatorname{Arcsin}\left\{\left(X T_{i+1}-X B_{1+1}\right) / d_{1+1}\right\} \tag{2}\\
& b_{1}=X B_{1+1}-X B_{1} \tag{3}\\
& a_{1}-\operatorname{Arctan}\left\{\left(Y B_{1}+1-Y B_{1}\right) / O_{1}\right\} \tag{4}
\end{align*}
\]
\[
\begin{align*}
& W_{1}=1 / 2 Y r\left|\left\{\left(Y B_{1}-Y T_{1}+1\right)\left(X T_{1}-X B_{1}+1\right)+\left(Y T_{1}-Y B_{1}+1\right)\left(X T_{1}+1-X B_{1}\right)\right\}\right| \tag{5}\\
& 2 W_{1+1}=\left(Y W_{1}+1-Y B_{1}+1\right) \tag{6}
\end{align*}
\]
where \(Y_{r}\) is the unit weight of the material forming the slice and \(W_{I}\) is the weight of the slice.

\section*{CALCULATION OF WATRR FORCES}

In order to cover all possible sroundwater conditions, including submergence of any part of the slope, the four cases defined in figure 2 have to be considered. In all cases, the uplift \(U_{1}\) acting on the base of the slice is given by:
\[
\begin{equation*}
U_{1}={ }^{1} / 2 \gamma_{W}\left|\left(Y W_{1}-Y B_{1}+Y W_{1}+1-Y B_{1}+2\right) \cdot b_{1} / \operatorname{Cos} a_{1}\right| \tag{7}
\end{equation*}
\]
where \(Y_{m}\) is the unit weight of water.
Case 1- do submersence of slice
YTi > \(\mathrm{WW}_{1}\) and \(\mathrm{YT}_{1+1}>\mathrm{YW}_{1+1}\)
\(P w_{1}=1 / 2 \gamma_{w}\left(Y_{1}-Y B_{1}\right)^{2} / \operatorname{Cos} \delta_{1} 1\)
\(P W_{1+1}=1 / 2 Y_{n}\left|\left(Y W_{1+1}-Y B_{1}+1\right)^{2} / \operatorname{Cos} \delta_{i+1}\right|\)
Case 2-submergence of side \(i\) anly
\(\mathrm{YT}_{i}\left\langle\mathrm{YW}_{1}\right.\) and \(\left.\mathrm{YT} \mathrm{T}_{1+1}\right\rangle \mathrm{YW}_{1+1}\)
\(P W_{1}=2 / 2 Y_{W}\left|\left(2 Y W_{1}-Y T_{1}-Y B_{1}\right)\left(Y T_{i}-Y B_{1}\right) / \operatorname{Cos} \delta_{1}\right|\)
\(P_{W} W_{1+1}=1 / 2 Y_{\mu}\left|\left(W_{1+1}-Y_{B}{ }_{1+1}\right)^{2} / \operatorname{Cos} \delta_{1+1}\right|\)
\(W W_{1} a^{2} / 2^{2} Y_{W}\left|\left(Y W_{1}-Y T_{1}\right)^{2}\left(X T_{1}+:-X T_{1}\right) /\left(Y T_{i}+1-Y T_{1}\right)\right|\)
\(W H_{1}=2 / 2 Y_{m}\left(W_{1}-Y T_{1}\right)^{2}\)
where \(W W_{1}\) and \(W_{i}\) are the vertical and horizontal forces applied to the surface of the slice as a result of the submergence of part of the slice. Note that the horizontal force \(\mathrm{WH}_{1}\) acts in a positive direction when \(\left.\mathbf{Y} \mathrm{T}_{1}+1\right\rangle \mathrm{YT}_{1}\) and in a negative direction when \(\mathrm{YT}_{1+1}\left\langle\boldsymbol{Y} \mathrm{~T}_{1}\right.\).

Case 3 - submergence of side \(i+1\) aoly

\(P W_{1}=1 / 2 Y_{w}\left|\left(Y W_{1}-Y B_{1}\right)^{2} / \operatorname{Cos} \delta_{1}\right|\)
\(P W_{1+1}=1 / 2 Y_{1}\left|\left(2 Y_{1+1}-Y_{1+1}-Y B_{1+1}\right)\left(Y T_{1+1}-Y_{1}{ }_{1+1}\right) / \operatorname{Cos} \delta_{1+1}\right|\)
\(W W_{1}=1 / 2 Y_{1}\left|\left(Y W_{1+2}-Y T_{1}+1\right)^{2}\left(X T_{1+1}-X T_{1}\right) /\left(Y T_{1}+1-Y T_{1}\right)\right|\)
\(W H_{1}=1 / 2 \gamma_{m}\left(W_{1+1}-Y T_{1+1}\right)^{2}\)
```

Case 4-camplete submergence of slice $i$
$X T_{1}<X W_{1}$ and $X T_{1}, 1<X W_{1} \cdot 1$
$P W_{1}=1 / 2 Y_{W}\left|\left(2 Y W_{1}-Y T_{1}-Y B_{1}\right)\left(Y T_{1}-Y B_{1}\right) / \operatorname{Cos} \delta_{1}\right|$
$P W_{1}, 1=1 / 2 \gamma_{1}\left|\left(2 W_{1} \cdot 1-Y_{1}+1-Y_{1}+1\right)\left(Y_{1}+1-Y_{B}+1\right) / \operatorname{Cos} \delta_{1+1}\right|$
$W W_{1}=1 / 2 Y_{W}\left|\left(Y W_{1}-Y T_{1}+Y W_{1}+1-Y T_{1}+2\right)\left(X T_{1}+1-X T_{1}\right)\right|$
$W H_{1}=1 / 2 Y_{W}\left|\left(W W_{1}-Y T_{1}+Y W_{1}+1-Y T_{1}+1\right)\left(Y T_{1}+1-Y T_{1}\right)\right|$

```

\section*{Water forces on ter first and last slice sides}

Although the water force \(P W_{1}\) acting on the first slice side and the force \(P W_{n+1}\) acting on the \(n+1\) th slice side (which could be a tension crack) are calculated by means of the equations listed above, these force 8 are not normally used in the calculation of critical acceleration. These forces can be important when the slope toe is submersed or when a tension crack is filled with water and the simpleat way to incorporate these forces into the analysis is to treat them as external forces. Hence, the vertical and horizontal components of these forces are given by:
\[
\begin{align*}
& T V_{1}=P W_{1} \cdot \operatorname{Sin} \delta_{1} \tag{22}\\
& T H_{1}=P W_{1} \cdot \cos \delta_{1} \tag{23}\\
& T V_{n}-P W_{n+1} \cdot \sin \delta_{n+1} \tag{24}\\
& T H_{n}=P W_{n+1} \cdot \operatorname{Cos} \delta_{n+1} \tag{25}
\end{align*}
\]
where \(n\) is the total number of slices included in the analysis.
Calculation of critical hocbleration Kc
The critical acceleration \(K c\) required to bring the slope to a condition of limiting equilibrium is given by
\[
\begin{equation*}
K c=A E / P E \tag{26}
\end{equation*}
\]
where
\[
\begin{align*}
& A E=a m+a_{n-1} \cdot e_{n}+a_{n-2} \cdot e_{n} \cdot e_{n-1}+\ldots+a_{1} \cdot e_{n} \cdot e_{n-1} \cdot . e_{3} \cdot e_{2} \tag{27}\\
& P E=p_{n}+p_{n-1} \cdot e_{n} \cdot p_{n-2} \cdot e_{n} \cdot e_{n-1}+\ldots+p_{1} \cdot e_{n} \cdot e_{n-1} ., e_{0} . e_{2} \tag{28}\\
& a_{1} Q_{1}\left(\left(W_{1}+T V_{1}\right) \cdot \sin \left(\phi-1-a_{1}\right)-T H_{1} \cdot \operatorname{Cos}\left(\phi_{1}-a_{i}\right)+R_{1} . \operatorname{Cos} \phi_{1}\right. \\
& +\operatorname{Si}_{1} \omega_{1} . \operatorname{Sin}\left(\phi_{1}-\alpha_{1}-\delta_{1}+1\right)-S_{1} . \operatorname{Sin}\left(\phi_{1}-\alpha_{1}-\delta_{1}\right) \tag{29}\\
& p_{1}=\alpha_{1} \cdot W_{1} \cdot \operatorname{Cos}\left(\phi_{0_{1}}-\alpha_{1}\right) \tag{30}\\
& e_{1}=a_{1}\left(\operatorname{Cos}\left(\phi_{1}-\alpha_{1}+\phi_{21}-\delta_{1}\right) / \operatorname{Cos} \phi_{s_{1}}\right. \tag{31}\\
& \theta_{1}=\operatorname{Cos} \phi_{31+1} / \operatorname{Cos}\left(\phi_{11}-\alpha_{1}+\phi_{1+1}-\delta_{1+1}\right) \tag{32}
\end{align*}
\]
\[
\begin{align*}
& S_{1}=c_{1} \cdot d_{1}-P_{1} \cdot \operatorname{Tan} \phi_{E_{1}} \tag{33}\\
& S_{1+1} \text { a } C_{1+1} \cdot d_{1}+1=P_{1}+1 . \operatorname{Tan} \phi_{31+1} \tag{34}\\
& R I=\text { at } \cdot b_{1} / \operatorname{Cos} a_{1}=U_{1} \cdot T a n \$_{1} \tag{35}
\end{align*}
\]

\section*{CALCULATION OF FACTOR OF SAPETY}

For slopes when the critical acceleration \(K c\) is not equal to zero, the static factor of safety is calculated by reducing the shear strength simultaneously o \(n 811\) sliding surfaces until the acceleration Kc, calculated by means of equation 26. reduces to zero. This is achieved by substitution, in equations 29 to 35. of the following shear strength values
\[
C_{i} / F, \operatorname{Tan} \phi s i / F, \text { at/F. } \operatorname{Tan} \phi s t / F, C s i+1 / F \text { and } \operatorname{Tan} \phi s 1+1 / F
\]

\section*{CRTCE ON ACCRPTABILITY OF SOLUTION}

Having determined the value of \(K\) for a given factor of safety, the forces acting on the sides and base of each slice are found by progressive solution of the following equations, starting fra the known condition that \(\mathrm{El}=0\).
\[
\begin{align*}
& \mathbf{E}_{1+1}=\mathbf{E A}_{1}-\mathbf{p l}_{1} \cdot \mathbf{K}+\mathbf{B}_{1} \cdot \mathbf{E}_{1} \tag{36}\\
& X I=\left(E_{i}-P H_{i}\right) \operatorname{Tan} \phi_{s_{1}}+C s_{1} \cdot d_{i} \tag{37}\\
& N_{1}=\text { ete } T V_{1}+X_{1+1} \cdot \operatorname{Cos} \delta_{1+1}+X_{1} \cdot \operatorname{Cos} \delta_{1} \\
& -E_{i+1} . \operatorname{Sin} \delta_{i+1}+E_{i} . \operatorname{Sin} \delta_{i}+U_{i} . \operatorname{Tan} \boldsymbol{D}_{1} . \operatorname{Sin} \alpha_{i} \\
& \text { - } \left.a_{1} \cdot b_{1} . \operatorname{Tan} \alpha_{1}\right) \cos \phi_{1} / \operatorname{Cos}\left(\phi_{1} i_{-}-a_{i}\right) \tag{38}\\
& T S_{1}=\left(N_{1}-U_{i}\right) \operatorname{Tan} \phi_{i}+\cos \cdot b_{i} / \operatorname{Cos} a_{1} \tag{39}
\end{align*}
\]

The effective normal stresses acting across the base and the sides of a slice are calculated as follows :
\[
\begin{align*}
& \sigma_{E_{1}}=\left(N_{i}-U_{1}\right) \cdot \operatorname{Cos} a_{1} / b_{1} \tag{40}\\
& \sigma_{B_{1}},=\left(E_{i}-P W_{1}\right) / d_{i} \tag{41}\\
& \sigma_{E_{1+1}}=\left(E_{i+1}-P W_{1+1}\right) / d_{1+1} \tag{42}
\end{align*}
\]

In order for the solution to be acceptable, all effective normal stresses must be positive.

A final check on to determine whether -t equilibrium conditions are satisfied for each slice is recommended by Saria. Referring to figure 1 and taking moments about the lower left hand comer of the slice :
\[
\begin{align*}
& N_{1} Z_{i}-X_{1+1} \cdot b_{1} \cdot \operatorname{Cos}\left(\alpha_{1}+\delta_{1}+1\right) / \operatorname{Cos} a_{i}-E_{1} Z_{1}+ \\
& \left.E_{1}+2\left(Z_{1+1}+b_{1} \cdot \operatorname{Sin}\left(\alpha_{1} \delta_{i+1}\right) / \operatorname{Cos} \alpha_{1}\right)\right)- \\
& W_{1}\left(X G_{1}-X_{1}\right)+K c W_{1}\left(Y G_{i}-Y_{B 1}\right)=T V_{1}\left(X I-X G_{1}\right)+ \\
& T H_{1}\left(Y_{1}-Y G_{1}\right)=0 \tag{43}
\end{align*}
\]
where \(X G_{1}, Y G_{1}\) are the coordinates of the centre of gravity of the slice and \(X_{1}, Y_{1}\) are the coordinates of the point of action of the force \(T_{1}\).

Starting from the first slice at the toe of the slope, where \(Z_{1}=0\), assuming a value of \(\mathcal{L}_{1}\), the moment ari \(Z_{1}\) \& can be calculated or vice versa. The values of \(Z_{1}\) and \(Z_{i+1}\) should lie within the slice boundary, preferably in the middle third.

\section*{COMPUIER SOLUTION FOR SARMA ANALYSIS}

A listing of a computer program for the analysis presented above is given in appendix 1 at the end of this paper. This program has been written in the simplest form of BASIC and great care has been taken to ensure that there are no machine-dependent comands in the program. Hence, it should be possible to key this program into any computer which runs Microsoft or equivalent BASIC and to modify it for any other form of BASIC. The progran has also bees carefully prepared so that it can be compiled into machine language wing a BASIC compiler. The compiled program will run about six times faster than the program listed in appendix 1.

A graphics option is built into the program which allows the user to view the geometry of the slope being analysed. This option assumes that BASICA or an equivalent fotn of BASIC which supports graphics is available and that the computer has IBM compatible graphics capability. If these facilities are not available the graphics option can be disabled as described in appendix 1.

A critical component of the program is the factor of safety iteration in which the shear strength values are progressively reduced (or increased) until the static factor of safety (for \(K=0\)) is found. Experience has shown that this iteration can be a very troublesome process and that severe numerical instability can occur if inappropriate values of \(F\) are used. The iteration technique used in the listed program is described below.

Figure 3 gives a plot of factor of safety \(F\) versus acceleration \(K\) for a range of friction angles for a typical slops analysis. This plot reveals that the curve of \(F\) vs \(K\) closely resembles a rectangular hyperbola and this suggests that a plot of \(1 / F\) vs \(K\) should be a straight line. As shown in figure 4, this is an acceptable assumption within the range of interest, ie from \(K=K c\) to \(K=0\) although. for significantly larger or significantly smaller values of \(K\). the curve is no longer linear. This observation has been found to be true for a wide range of analyses.

Sarma and Bhave (1974) plotted the values of the critical acceleration \(K c\) against the static factor of safety \(F\) for a large number of stability nalyses and found an approximately linear relationship defined by
\[
\begin{equation*}
F=1+3.33 \mathrm{Kc} \tag{44}
\end{equation*}
\]

While this relationship does not provide sufficient accuracy for the very wide range of problems encountered when applying this analysis to rock
mechanics problems, it does give a useful point close to the \(K=0\) axis on the plot of \(1 / F\) vs \(K\) as shown in figure 4. A linear interpolation or extrapolation, using this point and the value of Kc (at \(F=1\)), gives an accurate estimate of the static factor of safety. This technique has proved to be very fast and efficient and has been incorporated into the program. For critical cases, in which it is considered essential to plot the complete \(F\) vs \(K\) curve, an optional subroutine has been provided in the program to enable the user to produce such a plot.

\section*{PROBlegs with necative strissses}

The effective normal stresses across the sides and base of each slice are calculated by means of equations 40 to 42 and, in order for the solution to be acceptable, these stresses must all be positive. The reaaons for the occurrence of negative stresses and some suggested remedies are discussed below.

Negative stresses CM occur near the top of a slope when the lower portion of the slope is lass stable and hence ten\& to slide away from the upper portion of the slope. This is the condition which leads to the formation of tension cracks in actual slopes and the negative stresses in the numerical solution can generally be eliminated by placing a tension crack at au appropriate position in the slope.

Negative stresses at the toe of a slope are sometimes caused by an excessively strong toe. This can occur when the upward curvature of a deepseated failure - वメஞg becomes too severe in the toe region. Flattening the curvature or reducing the shear strength along the base will generally solve this problem.

Excessive water pressures within the slope can give rise to negative stresses, particularly near the top of the slope where the normal stresses ara low. Reducing the level of the phreatic surface in the region in which negative stresses occur will usually eliminate these negative stresses.

Inappropriate selection of the slice geometry, particularly the inclination of the slice sides, can give rise to negative stress problems. This is au important consideration in rock mechanics when preexisting failure surfaces such as joints and faults are included in the analysis. If a potential failure path with a lower shear strength than that of the preexisting surface exists in the sliding mass, negative stresses can occur along the pm-existing surface which has been chosen as a slice side. Saraa (1979) has shown that the wst critical slice side inclinations are approximately normal to the basnl failure surface. In the case of a circular failure in homogeneous soil, these slide sides are approximately radial to the centre of curvature of the failure surface.
\(A\) rough or irregular failure surface can also give rise to negative stress problems if it causes part of the sliding mass to be significantly more stable than an adjacent part. During the early stages of development of this program, the author compared answers against solutions for the same problem obtained froa Bishop circular failure analyses. It was found that, in order to obtain absolute agreement between the solutions. the coordinates of the failure surface had to be calculated to ensure that the slice base inclinations were identical in the two analyses. Consequently, for critical problem, reading the slice base coordinates from a drawing may not be adequate and it may be necessary to calculate these coordinates to ensure that undulations are not built into the analysis.

\section*{DRAINAGB OF SLOPRS}

Three options for analysing the influence of drainage upon the stability of slopes have been included in the prograa listed in appendix 1.

The first option involves inserting a value for zero for the unit weight of water during initial entry of the data. This will activate an automatic routine in the progren which will set all water forces to zero and give the solution for a fully drained slope.

The second option providaa the user with the facility for changing the unit might of water during operation of the program. This results in a pore-pressure ratio (\(r_{u}\)) type of analysis such as that c-nly used in soil mechanics (see Bishop and Morgenstern (1960)). This analysis is useful for sensitivity studies on the influence of drainage on slope stability since it provides the user with a very fast means of changing the water pressures throughout the slope.

The final method of snelyaing the influence of drainege is to change the phreatic surface coordinates on each slice boundary. This \(\square\) ethod is rather tedious but it probably represents the actual field conditions more realistically than the ru analysis described above.

The water pressure distributions assumed in this analysis are illustrated in figures 1 and 2 and these distributions are considered to be representative of those wst commonly occurring in the field. There are, however, situations in which these water pressure distributions are inappropriate. The but example of such a situation is a dam foundation in which the water pressure distribution is modified by the presence of grout and drainage curtains. The simplest way to account for such changes in the analysis presented here is to calculate the change in total uplift force on the base of each slice influenced by drainage and grouting end then to apply this change as a stabilizing external force acting normal to the slice base.

\section*{IMCORPORATION OF NOH-LINEAR FAILURB CRITERIA}

Hoek (1982) has diacuaaed the question of non-linear failure criteria for heavily jointed rock masses and has given an example of the analysis of a large open pit mine slope in such materials. Since the Sarma analysis calculatea the effective normal stresses on each slice side and base, these values can be used to deternine the instantaneous cohesion and friction angle acting on these surfaces. An iterative technique is used to change these shear strength values until the difference between factors of safety calculated in successive iterations is acceptably small. Three or four iterations are usually sufficient to give an acceptable answer.

The iterative process described above is relatively easy to build into the analysis presented in appendix 1 but, in the interests of spece, this has not been done in this paper. In addition, non-linear analyses are generally only carried out for fairly complex problem and only after a large nuder of sensitivity studies using linear failure criteria have been performed. In such cases. the user is generally seeking a fundamental understanding of the mechanics of the slope behaviour and it is advantageous to carry out the non-linear analysis manually in order to enhance this understanding.

\section*{BRCOMMRDRD STEPS IN CARRYING CUT AN ANALYSIS}

When applying this analysis to an actual slope probla s great deal of tir can be wasted if too detailed an analysis is attapted at the beginning of the study.

The first step in any analysis involves a deteraination of the most critical failure surface. Bxcept where this aurface has been clearly predefined by existing geological weakness planes or observed failure surface, some form of search for the critical failure surface - ust be carried out. A good starting point for such a search is a set of charts such as those devised by Hoek and Bray(1981) and reproduced in figures 5 and 6. These give a first eatimate of the location of the centre of rotation of a critical circle and the position of a tension crack in a homogeneous slope.

Based upon some eatimate or educated guess of the critical failure surface location, the sliding mass is divided into slices, using the fewest possible nuber of slims to approximate the geometry. Usually three or four slices will suffice at this stage since only a very crude analysis is required to check the critical failure seometry.

A number of trial analyses with differant failure surface locations should then be carried out. It will be found that a set of critical conditions will quickly be found and a sore refined model can then be constructed. Uniless the slope geometry is extremely complex, five to ten slices will generally be found to give an acceptable level of accuracy for this refined analyais.

Sarma (1979) suggests that the optimur inclination of the slice sides should be deternined by varying the inclination of each slice side while keeping the others fixed. The optimium inclination for each slice side is that which gives the minimur factor of safety for the complete slope. In relatively simple slopes in which the range of shear strengths is fairly limited, the factor of safety is relatively insensitive to slice side inclination and. in such cases, it is generally acceptable to set the slice side inclination normal to the failure surface.

\section*{BXANPLR 1 - SPOIL PILR ON A WBAE FOUNDATION}

A common problem which occurs in the strip \(\square\) ining of coal involves failure of spoil (waste material) piles placed on weak inclined foundations. One such problr has been studied in considerable detail by Coulthard (1979) and the results which he obtained am reproduced below by means of the Sarma non-vertical slice wthod.

The failure geometry. reconstructed from field measurements by the Australian CSIRO, is illustrated in figure 7. This shows that the failure involves downerd movement of an "active" wedge and outward movement along the weak inclined base of the "passive" wedge. The shear strengths on the inclined base and on the two internal shear failure surfaces are based upon laboratory strength test results.

In order to demonstrate the negative stress probla discussed above, the first analysis carried out is for a waste pile with a high groundwater table - a situation which would be most unlikely to occur in an actual spoil pile. The reaults of the analysis carried out for these conditions are listed in table 1 and a plot of the graph of factor of safety versua acceleration is given by the dashed line in figure 8. Note that negative stresses occur on both internal shaariog surfaces in this analysis and the calculated factor of safety of 0.26 is unaccaptable. It is also important
to note that the plot of \(F\) vs \(K\) has an asymptote of \(F=0.428\) and that factors of safety of less than this value are meaningless.

This example demonstrates that, under certain circumstances, the iteration technique used in the progras (and all other iteration techniques tried during the development of the progras) will choose the incorrect solution. As shown in figure 8. the factor of safety for \(K=0\) is 0.48 whereas the second root of 0.26 has been chosen by the iteration technique. Fortunately, this problem is very rare and, as far as the author has been able to ascertain, is always associated with negative stresses which generate the message that the solution is unacceptable. Nevertheless, for critical problems, it is recomended that the curve of factor of safety versus acceleration be plotted out to ensure that the correct solution has been chosen.

The second solution is for a drained spoil pile. A factor of safety of 1.20 is obtained for this case and all the effective normal stresses are positive. The plot of factor of safety versus acceleration, given as the solid line in figure 8, shows that the value of 1.20 is well above the asymptote of 0.428 which. interestingly, is the same as for the previous analysis.

A third analysis, using the same geometry as illustrated in figure 7 but with the slope drained and the cohesion on side 2 reduced to zero, produces a factor of safety of 1.00 . This limiting equilibrium condition is identical to that obtained by Coulthard (1979) using a two-wedge analysis similar to that proposed by Seed and Sultan (1967) for sloping core embankent dams.

\section*{EXMPLR 2 - OPRN PIT COAL MINK SLOPE}

Figure 9 illustrates the geometry of a slope problem in a large open pit coal mine. A thin coal seas is overlain by soft tuff and existing failures in the slope show that sliding occurs along the coal seam with the toe breaking out through the soft tuff. In the case illustrated, a reservoir close to the crest of the slope recharges the slope with water and results in the high groundwater surface illustrated. Laboratory tests and back analysis of previous failures give a friction angle of 18 degrees and a cohesion of zero along the coal seas and a friction angle of 30 degrees and cohesion of 2 tonnes/sq.m for failure through the soft tuff. The unit wight of the tuff is 2.1 tonnes/cu.m and the unit weight of water is 1.0 tonne/cu.m.

A printout produced by the progras listed in appendix 1 is reproduced in table 2 and this shows that the factor of safety for the slope illustrated in figure 9 is 1.17 . A sensitivity study of drainage shows that 50x drainage (reducing the unit wight of water to 0.5 tonnes/cu.m) increases the factor of safety to 1.41 while complete drainage of the slope gives a factor of safety of 1.65. In the actual case upon which this example is based, the reservoir above the slope was drained but in adjacent slopes long horizontal drain holes wre used to reduce the water pressures in the slopes.

\section*{GXAYPL8 3 - PARTIALLY SURARRGRD ROCKFILL SLOPR}

Figure 10 illustrates the geometry of a rockfill slope placed underwater onto a sandy river bottom. The rockfill is partially submerged and the

\begin{abstract}
failure surface (determined by aritical failure search using a conventional vertical slice analysis) involves both the rockfill and the sand base. A printout of the slope geometry, material properties and calculated factor of safety is given in table 3.

It is interesting to note that the critical acceleration for this slope is 0.2106. This means that, for a pseudo-static analysis of earthquake loading, a horizontal acceleration of 0.21 g would be required to induce failure in the slope. Factors of safety corresponding to different pseudo-static horizontal acceleration levels can be found by using the optional subroutine, included in the program, to produce a plot similar to that illustrated in figure 8. In the actual case upon which this example was based, a more complete dynamic earthquake analysis was performed but in many cases a pseudo-static check on stability under earthquake loading is acceptable.
\end{abstract}

\section*{ACENONLRDGEYENTS}

The author wishes to acknowledge the interest and support of many of his colleagues in Colder Associates in the development of the program listed in appendix 1. Special thanks are due to Mr Ken Inouye and Mr Trevor Fitzell for their practical assistance in writing and debugging parts of the program.

\section*{RRPRRRNCES}
1. Bishop, A.W. and N.R. Morgenstern 1960. Stability coefficients for earth slopes. Geotechaique 10(4), 129-50.
2. Coulthard, M.A. 1979. Back-analysis of observed spoil failures. Tech. Rep. No. 83, Div. Appl. Mach., Aust. Corm. Sci. Ind. Res. Org., Melbourne.
3. Hoek, E. 1983. Strength of jointed rock masses. Geotechpique 33(3), 187-223.
4. Sorma, S.K. 1979. Stability analysis of embankents and slopes. J. Geotacb. Brage Div., Am. Soc. Civ. Engrs 105, No. GT12. 151124.
5. Sarma, S.K. and H.V. Bhave 1974. Critical acceleration versus static factor of safety in stability analysis of earth dams and embankments. Geotechoique 24(4), 661-5.
6. Seed, H.B. and H.A.Sultan 1967. Stability analyses for a sloping core embaniaent. J. Soil Mech. Foundos Div., Am. Soc. Civ. Rogrs 93, No. SMA, 45-67.

Figure 1: Definition of soometry and forces acting on ith slice.

Figure 2: Definition of water forces.

Figure 3: Factor of safety versus acceleration for a typical slope.

Fizure 4: Plot of reciprocal of factor of afety versus acceleration.

Figure 5: Approximate locations of the centre of curvature of a circular failure surface and a tension crack in a drained homogeneous slope.

Location of centre of crisical circle for lailuete ehrowint toe

Figure 6: Approximate locations of tha centre of curvature of a circular failure surface and a tension crack in a homogenoous slope with groundeater present.

Location of critical seniton crect mosition

Figure 7: Geometry of a spoil pile on a weak foundation analysed by Coulthard (1979).

Unit weight of spoil material \(=15.7 \mathrm{kN} / \mathrm{m}^{3}\) Unit weight of water \(=10 \mathrm{kN} / \mathrm{m}^{3}\)

Figure 8:' Plot of factor of safety veraus acceleration \(K\) for a spoil pile on an inclined weak foundation.

Figure 9: Geometry for an Open pit coal mine slope.

Table 1: Printout for analysis of stability of spoil pile on a weak foundation (figure 7).

\section*{SARMA NON-VERTICAL SLICE ANALYSIS}

Table 2: Printout for analysis of stability of open pit coal mine slope (figure 9).

SAPMA NON-VERTICAL SLICE ANALYSIS
Analysis no. 2 - Open pit coal mine slope with tuff overlying coal seam.
Unit weight of water \(=1\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Side number & 1 & 2 & & 3 & 4 & 5 & & 6 \\
\hline Coordinate xt & 4.00 & 17.00 & & 29.00 & 30.00 & 50.00 & & 68.00 \\
\hline Coordinate yt & 17.00 & 26.00 & & 26.00 & 24.00 & - 25.00 & & 37.00 \\
\hline Coordinate XW & 4.00 & 17.00 & & 29.00 & 30.00 & - 50.00 & & 70.00 \\
\hline Coordinate yw & 17.00 & 23.00 & & 22.00 & 22.00 & 24.00 & & 33.00 \\
\hline Coordinate xb & 4.00 & 17.00 & & 29.00 & 30.00 & - 50.00 & & 80.00 \\
\hline Coordinate yb & 17.00 & 12.00 & & 10.00 & 10.00 & - 8.00 & & 11.00 \\
\hline Friction angle & 0.00 & 30.00 & & 30.00 & 30.00 & 30.00 & & 18.00 \\
\hline Cohesion & 0.00 & 2.00 & & 2.00 & 2.00 & - 2.00 & & 0.00 \\
\hline Slice number & & 1 & 2 & & 3 & 4 & 5 & 6 \\
\hline Rock unit weight & & 2.10 & 2. & 10 & 2.10 & 2.10 & 2.10 & 102.10 \\
\hline Friction angle & & 30.00 & 30.00 & & 30.00 & 30.00 & 30.00 & 30.00 \\
\hline Cohesion & & 2.00 & 2.00 & & 2.00 & 2.00 & 2.00 & 2.00 \\
\hline Force T & & 0.00 & 0.00 & & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Angle theta & & 0.00 & 0.00 & & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline Effective normal & \multicolumn{8}{|l|}{stresses} \\
\hline Base & & 29.91 & 37.07 & & 22.52 & 29.22 & 44.54 & 27.92 \\
\hline Side & 0.00 & 23.69 & & 41.25 & 48.08 & 60.63 & & 63.72 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Side number & 7 & & 8 & & 9 & & 10 \\
\hline Coordinate xt & 140.00 & & 165.00 & & 178.00 & & 204.00 \\
\hline Coordinate yt & 88.00 & & 90.00 & & 99.00 & & 103.00 \\
\hline Coordinate XW & 146.00 & & 166.00 & & 180.00 & & 204.00 \\
\hline Coordinate yw & 80.00 & & 89.00 & & 96.00 & & 103.00 \\
\hline Coordinate xb & 155.00 & & 173.00 & & 186.00 & & 204.00 \\
\hline Coordinate yb & 65.00 & & 80.00 & & 89.00 & & 103.00 \\
\hline Friction angle & 18.00 & & 18.00 & & 18.00 & & 0.00 \\
\hline Cohesion & 0.00 & & 0.00 & & 0.00 & & 0.00 \\
\hline Slice number & & 7 & & 8 & & 9 & \\
\hline Rock unit weight & & 2.10 & & 2.10 & & 2.10 & \\
\hline Friction angle & & 30.00 & & 30.00 & & 30.00 & \\
\hline Cohesion & & 2.00 & & 2.00 & & 2.00 & \\
\hline Force T & & 0.00 & & 0.00 & & 0.00 & \\
\hline Angle theta & & 0.00 & & 0.00 & & 0.00 & \\
\hline Effective normal & stress & & & & & & \\
\hline Base & & 18.89 & & 11.90 & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{6.64}} \\
\hline Side & 14.41 & & 11.11 & \multicolumn{2}{|r|}{3.25} & & \\
\hline
\end{tabular}

APPENDIX l-BASIC COMPUTER PROGRAM FORSAFMANON-VBRTICAL SLICB ANALYSIS.
The BASIC program listed on the following pages has been written for use on microcomputers which run Microsoft or equivalent BASIC. In order to utilize the graphics option (lines 6410-6970) it is necessary to use BASICA or an equivalent BASIC which supports graphics comeands and to run the program on a computer fitted with an IBM or compatible graphics card. If no graphics facilities are available, the graphics subroutine may be disabled by deleting line 1800 and the function kay display can be removed by deleting lines 4750 and 4760.

The program can be compiled using a BASIC compiler and this produces a machine language program which runs about six times faster than the BASIC program. The compiled program may not drive printers fitted with serial interfaces (RS232C) and the printer manual should be consulted for instructions on initializing the printer. If it proves impossible to drive the printer from the compiled program, it will be found that the BASIC program will drive almost any printer.

The function keys for the main program execute the following operations:

Fl - Print : prints the tabulated data and calculates critical acceleration and factor of safety as shown in tables 1 to 3.
\(\mathbf{F 2}_{2}=\) Calculate : recalculates the critical acceleration and the factor of safety using the displayed data.

F3 - fos vs \(k\) : activates \(a\) subroutine to calculate values of the acceleration \(K\) for different factors of safety. A new display is used for this subroutine.

F4 - drain : enables the user to edit the line which displays the unit weight of water. This is used to change the unit weight of water in sensitivity studies using a portpressure ratio (\(r_{u}\)) approach.

F5- file : displays the data files already stored on the disk and requests a new file name. Stores the displayad data on a disk file.

F6 - restart : returns to the first page display which asks various questions before the data array is displayed.

F7 = quit : exits the program and returns to BASIC. The program may be reactivated by tying RUN and pressing enter.

F8 - view : activates the graphics display if a suitable graphics card is fitted.

\section*{TABLB 4- DEFINITION OF ARRAY A(J.E) YOR SAFMA ANALYSIS}

```

10 * SAPMA - NON-VERTICAL SLICE METHOD OF SLOPR STABILITY ANALYSIS
20 ' Version 1.0 = Written by Dr.B.Hoek, Colder Associates, January 1S86
30 ' Reference : Sarma, S.K. (1979), Stability analysis of cmbankments
40'
50'
60
70
80'
90 STATUS="'i":RAD=3.141593/180:F=1:M=1
100 DIM A(39,50), WW(50),WH(50), ACC(10), ACL(100)
110 DIM PB(50), PS(50), PHALP(50),ZW(50), FL(100)
120 DIM THETA(50),TV(50),TH(50),ZWT(50)
130 '
140* Defioitiw of fumction heys
150
160 KEY OFF:PORI = 1 TO 8:KEY I,"":NEXT I
170 KEY 1,"a": KEY 2,"b": KEY 3,"c": KEY 4,"d"
180 KEY 5,"e": KRY 6,"f":MEY 7, "g":KRY 8, "h"
190.
200' Display of first page
210'
220 SCREEN 0,0:WIDTH 80:CLS:LOCATE8,17:COLOR 0.7:
230 PRINT " SAPMA NUN-VERTICAL SLICK STABILITY ANALYSIS ^
240 COLOR7,0:LOCATE 11.12
250 PRINT "Copyright - Bvert Hoek, 1985. This program is one of"
60 LOCATE 12.12
270 PRINT "a series of geotechnical programs developed as working"
280 LOCATE 13.12
290 PRINT "tools and for educational purposes. Use of the progra"
300 LOCATR 14.12
3 1 0 PRINT "is not restricted but the user is responsible for the"
320 LOCATE 15.12
330 PRINT "application of the results obtained from this prorrem."
340 LOCATE 18,25:PRINT "Press any key to continue"
350 IF LEN(INKEY$) = 0 THEN 350
360
370 ' Display of second pace
360
390 CLS: LOCATE 25.12
400 PRINT "to terminate input enter **;
410 LOCATE 25,37:COLOR 0,7:PRINT " q";
420 LOCATE 25,41:PRINT "in response to any question";
430 LOCATE 10,12
4 4 0 ~ I N P U T ~ " D o ~ y o u ~ w i s h ~ t o ~ r e a d ~ d a t a ~ f r o m ~ a ~ d i s k ~ f i l e ~ ( y / n ) ~ ? ~ : ~ ` . D I 8 x \$
450 IF LBPT$(DISK$,1)="\boldsymbol{q"}
460 IF LEN(DISK$)=0 THEN 430
470 IF LRFT$(DISK$,1)="Y" OR LEFT$(DISK$,1)="y" THEN 660
480 LOCATE 11,12
4 9 0 ~ I N P U T ~ " N u m b e r ~ o f ~ s l i c e s ~ t o ~ b e ~ i n c l u d e d ~ i n ~ a n a l y s i s ~ : ~ " . N M W
500 IF LEFT$(NUN&, 1)="'q" OR LBFT$(NUN$, 1)="O" THRN 6980
510 IF LEN(NUN&)=0 TRIEN 480 BLSE NLM=VAL(NUN$)
520 FLAG2=0: LOCATE 12.12
530 INPUT "Unit weight of water =
".matrR\&
540 IF LAFT$(WATER$,1)="q"OR LBFT$(WATBR$,1)="O" THRN 6980

```
```

550 IF LEN(WATER$)=0 THEN 520 ELSE WATER =VAL(WATER$)
560 IF WATER = 0 THEN FLAG2=1
570 FLAG3=0: LOCATB13.12
580 INPUT "Are shear strengths uniform throughout slope (y/n) ?",STRENGTHS
590 IF LBFT$(STRENGTH$,1)="q" OR LEFT$(STRENGTH$,1)="O" THEN 6980
600 IF LEN(STRENGTH$)=0 THEN 570
610 IF LBFT$(STRENGTH$,1)="Y" OR LEFT$(STRENGTH$, 1)="y" THEN FLAG3=1
620 N=NUM+1:GOTO 1950
630
640' Data eotry from a disk file
650'
660 CLS:LOCATE 8,1:PRINT STRING$(8\Omega A5)
670 PRINT:PRINT "Sarma data files on disk";
680 PRINT: FILES "A:SARMA*.DAT":PRINT:PRINT STRING$(80,45):PRINT
690 INPUT "Enter filename (without extension): ",FILE$
700 CLS:OPBN "A:"+FILLS$+".DAT" FOR INPUT AS *l
710 LINK INPUT*1, TITLE$: INPUT*1,N: INPUT*1,WATER
720 RAD=3.141593/180:F=1:M=1:NMSN-1
730 INPUT:1, FLAG2: INPUT*1,FLAG3:INPUT*1,FLAG4
740 FOR K = 1 TO N: FOR J=1 TO 39: INPUT*1,A(J,K):NEXT J:NEXT K
750 INPUT*1, ACC: INPUT*1, ACC(2): INPUT\#1, FOS
760 CLOSE \#l:F=1: FLAG6=1:STATU$="e":GOTO 1950
770
760 * Display Of data array
790'
800 CLS:LOCATE 1,1:PRINT "Analysis no.";TITLE$
810 LOCATE 3,1:COLOR 15,0:PRINT "Side number":COLOR 7,0
820 LOCATE 4,1:PRINT "coordinate xt"
830 LOCATE 5,1:PRINT "coordinate yt"
\&O LOCATE 6,1:PRINT "coordinate xw"
850 LOCATE 7,1:PRINT "coordinate yw"
860 LOCATE 8,1:PRINT "coordinate xb"
870 LOCATE 9,1:PRINT "coordinate yb"
880 LOCATE 10,1:PRINT "friction angle"
890 LOCATE 11,1:PRINT "cohesion"
900 LOCATR 12,1:PRINT "unit weight of water = "
910 LOCATE 12,23:PRINT WATER
920 LOCATE 13,1:COLOR 15.0
930 PRINT "Slice number":COLOR 7.0
940 LOCATE 14,1:PRINT "rock unit weight"
950 LOCATE15,1:PRINT "friction angle"
960 LOCATR 16,1:PRINT "cohesion"
970 LOCATE 17,1:PRINT "force т":LOCATE 18.1
980 PRINT "angle theta"
990 cOSUB 1040
1000 IF STATUS=*i" THEN COSUB 1140: RETURN ELSE RRTURN
1010*
1020' Subroutine for slice muber display
1030.
1040 COLOR 15,0:LOCATE 3,22:PRINT M: LOCATE 13.27:PRINT M
1050 LOCATE 3,32:PRINT M+1:COLOR 7,0:IF N=M+1 THEN RRTURN
1060 COLOR 15,0: LOCATB 13,37:PRINT M+1: LOCATB 3.42
1070 PRINT M+2:COLOR 7,0:IF N=N+2 THEN RETURN
1080 COLOR 15,0:LOCATS 13,47:PRINT M+2:LOCATE }3.5

```

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{1630: Subroutive for cursor movement and display of array a(j,k)} \\
\hline 1650 & \multicolumn{2}{|l|}{1650 FLAG10=0: FLAG11=0: FLAG12=0: FLAG13=0} \\
\hline 1660 & FLAG14=0: \(\operatorname{COSUB} 1900\) & \\
\hline 1670 & QS=INKEYS:IF OS5" \({ }^{\text {c }}\) THBN 1670 & 'scan keyboard \\
\hline \multicolumn{3}{|l|}{} \\
\hline 1690 & IF OS="K" THEN GOSUB 1870: FLAG10=1: RESTURN & - left \\
\hline 1700 & IF OS="M" THEN GGSUB 1870:FLAG12=1:RETURN & 'right \\
\hline 1710 & & 'up \\
\hline 1720 & IF QS="P" THEN GOSUB 1870: FLAG13=1: RETURN & ' down \\
\hline 1730 & IF OS="a" THEN GOSUB 1870: FLAG14=1: RESTURN & 'print \\
\hline 1740 & IF QS="b" THEN GGSUB 1870: FLAG15=1: RETURN & 'calculate \\
\hline 1750 & IF \(\mathbf{Q} \mathbf{\$}=\mathbf{" c} \mathbf{c}^{\prime}\) TURN GGSUB 1870: FLAG16=1: RRTURN & ' r.o.s vs \(\boldsymbol{K}\) \\
\hline 1760 & IF OS="d" THEN GGSUB 1870: FLAG25=1: RETURN & 'drain \\
\hline 1770 & IF OS="e" THBN GOSUB 1670: FLAG17=1: RETUPN & 'file \\
\hline 1760 I & IF OS \(=\) " \(\mathrm{f}^{\prime \prime}\) THEN FLAG26=1: RETURN & - restart \\
\hline 1790 & & 'quit \\
\hline 1800 & IF \(0 ¢=\) " \(h\) " THEN FLAG27 \(=1:\) RETURN & ' view \\
\hline 1810 & IF O \(\$=\times 0 \times\) THEN 1890 & 'enter zero \\
\hline 1820 & IF Q \(\ddagger=\) "-" THEN 1890 & 'enter minus \\
\hline 1830 & IF OS="." THEN 1890 & 'enter period \\
\hline 1840 & IF VaL(0\$)<1 OR VAL(0\%)>9 THEN 1670 & - enter nuder \\
\hline \multicolumn{3}{|l|}{1850 LOCATE \(\mathrm{Y}, \mathrm{X}\) : PRINT VAL \((\mathbf{O}\))} \\
\hline \multicolumn{3}{|l|}{} \\
\hline \multicolumn{3}{|l|}{1870 LOCATE \(Y\), X:PRINT "} \\
\hline 1880 & LOCATEY, X:PRINT USING "*****.**"; A (J, K) : RRTURN & 'display entry \\
\hline \multicolumn{3}{|l|}{1890 LOCATE Y, X:PRINT " "; :PRINT OF:GOTO 1860} \\
\hline \multicolumn{3}{|l|}{1900 LOCATE Y,X:COLOR 0,7} \\
\hline \multicolumn{3}{|l|}{1910 PRINT " \({ }^{\text {" }}\) (COLOR 7,0:RETUEN} \\
\hline \multicolumn{3}{|l|}{1920} \\
\hline \multicolumn{3}{|l|}{1930 : Data entry wd display of array a(j,k)} \\
\hline 1940 & & \\
\hline \multicolumn{2}{|l|}{1950 F=1:M=1.COSUB 800:COSUB 1260 'screen display} & 'screen display \\
\hline \multicolumn{3}{|l|}{1960 FOR K=1 TO 6: FOR J=1 TO 17} \\
\hline \multicolumn{3}{|l|}{1970 IF FLAGI=1 THEN 2140} \\
\hline \multicolumn{3}{|l|}{1980 IF FLAG23-1 THEN FLAG6=0:GOT0 2000} \\
\hline \multicolumn{3}{|l|}{1990 IF FLAG22=1 THEN FLAG6=1:COTO 2140} \\
\hline 2000 & IF PLAG10=1 THEN GGSUB 2500 & 'left \\
\hline 2010 & IF FLAGll=1 THEN GOSUB 2610 & 'right \\
\hline \multicolumn{3}{|l|}{2020 IFFLAG12=1 THEN GOSUB 2720 'up} \\
\hline 2030 IF & IF Flagle \(=1\) THEN GOSUB 2840 & - down \\
\hline \multicolumn{3}{|l|}{2040 IF FLAG14=1 THEN GOSUB 5710 'print} \\
\hline \multicolumn{3}{|l|}{2050 IFFLAG15-1 THEN F=1:GOTO 3050 ; calculate} \\
\hline \multicolumn{3}{|l|}{2060 IF FLAG16=1 THEN 5130 'f.o.s vs \(\boldsymbol{K}\)} \\
\hline \multicolumn{3}{|l|}{2070 IF FLAG17=1 THEN 6310 'file} \\
\hline \multicolumn{3}{|l|}{2080 IF FLAG18=1 THEN 6980 'quit} \\
\hline 2090 IF & IF FLAG19=1 THEN 2190 & ' next page \\
\hline \multicolumn{3}{|l|}{2100 IF FLAG25=1 THENFLAG25=0:COSU8 2950 'drain} \\
\hline \multicolumn{3}{|l|}{2110 IF FLAG26=1 THBN 2120 RLSB 2130} \\
\hline 2120 F & & 'restart \\
\hline 2130 I & IF FLAG27=1 THEN 6440 & - view \\
\hline 2140 I & IF K<N THEN 2160 & 'chock end \\
\hline 2150 & IF J=7 THRN 3040 & ' and input \\
\hline 2160 I & IF K=6 AND J=9 THBN 2180 & 'first page \\
\hline
\end{tabular}
\[
A 7-29
\]

```

2710 '
2 7 2 0 ~ I F ~ J = 2 ~ A N D ~ K - 1 ~ T H E N ~ 2 7 3 0 ~ E L S E ~ 2 7 4 0
2730 STATUS="r":GOSUB 1270:STATU$=`"e": J=1:K=1:COTO 2800'edit title
2740 IF J=2 THEN J=1: GOTO 2800 'limit up
2 7 5 0 ~ I F ~ J = 6 ~ A N D ~ F L A G 2 = 1 ~ T H E N ~ J = 2 : G 0 T 0 ~ 2 8 0 0 ~ " d r a i n e d ~
2760 IF K=l AND J=ll THEN J=6:GOTO 2800 '1st columen
2 7 7 0 ~ I F ~ J = 1 1 ~ T H E N ~ J = 8 : C O T O ~ 2 8 0 0 ~ ' s k i p ~ s p e c e ~
2780 IF J=16 THEN J=12:GOTO 2B00 'skip space
2790 IF J>=3 AND J<=17 THEN J=J-2: FLAG12=0: GOT0 2800 'up
2800 FLAGI2=0: RETURN
2810'
2820 " Subroutine to move cursor down
2830
2840 IF K=N AND J=7 THBN J=6:G0T0 2910 " last colum
2850 'IF J=1 AND K=1 THEN J=2:K=2:COTO 2830 'exit title
2860 IF FLAG2=1 AND J=3 THEN J=5:GOTO 2910 'skip space
2870 IF J-9 THEN J=10: COTO 2910
2880 IF J=13 THEN J=15:COTO 2910
2890 IF J=16 AND A(J,K)=0 THEN J=15:G0TO 2910 'dam limit
2900 IF J=17 THEN J=16:GOTO 2910 'down limit
2910 FLAG13=0: RETURN
2920*
2930 "Subroutine to drain by changiag unit meight of mater
2940 '
2950 LOCATE 12.1:PRINT STRING$(30." "):COLOR 0.7
2960 LOCATE 12,1:PRINT "unit weight of water"
2970 COLOR 7,0:LOCATE 12,23: INPUT " = ",WATER
2980 LOCATE 12,1:PRINT STRING\$(30,* "):VOCATE 12,1
2990 PRINT "unit weight of water = ";WATRR
3000 J=J-1: RETURN
3010
3020 ' Calculation of slice parameters
3030 *
3040 IF STATUS="e" THEN 4240
3050 GOSUB 3320:FOR K=1 TO N:GOSUB 3430:NEXT K 'd \& delta
3060 FOR K=lTO NUM:GOSUB 3490: NEXT K 'b, \&lpha,w \& |
3070 WAT=.5*WATER:COSUB 3580 'water forces
3080 FOR K=l TO N:A (24,K)=A(12,K)/F:A(26,K)=A(8,K)/F
3090 PB(K)=A(11,K)*RAD:PS(K)=A(7,K)*RAD 'deg to radians
3100 A(25,K)=TAN(PB(K))/F 'tanphi/F
3110 A(27,K)=TAN(PS(K))/E
3120 PB(K)=ATN(A(25,K)):PS(K)=ATN(A(27,K))
3130 PHALP(K)=PB(K)-A(20,K):THETA (K)=A (16,K) \&RAD
3140 TV(K)=A(15,K)*SIN(THETA(K))+WW(K)
3150 IF A(16,K)=90 THEN TH(K)=0:GOT0 3180
3160 IF A(16,K)=270 THESN TH(K)=0:00T0 3180
3170 TH(K)=A(15,K) tCOS(THETA(K))
3180 TH(K)=TH(K)+WH(K):NEXT K
3190 TV (N-1)=TV(N-1)-A(23,N)*SIN(A(18,N)) 'water in
3200 TH(N-1)=TH(N-1)-A(23,N)*\operatorname{Cos}(A(18,N)) , tension creck
3210 TV(1)=TV(1)+A(23,1)*SIN(A(18,1))
3220 TH(1)=TH(1)+A(23,1)*COS (A(18,1))
3230,
3240 'Calculation of EC

```
```

3250
3260 FOR K=2 TO N: GOSUB 3880:NEXT K 'S
3270 FOR K=1 TO MM:GOSUB 3890: NEXT K 'R,Q,e,P,\&.KC
3280 GOTO 4050
3290
3300 "Subroutide for display of "calculating"
3310
3320 IF FLAG15=0 THEN LOCATE 20,7:PRINT STRINGS(70."*)
3330 LOCATE 22,7:PRINT STRINGt(70,"")
3340 LOCATE 23,7:PRINT STRING$(70,**)
3350 LOCATE 24,7:PRINT STRING$(70,""):
3360 LOCATE 22,28: COLOR 0,7
3370 PRINT " C A L C U L A T I N G ':COLOR 7,0
3380 FOR J=17 TO 39:FOR K= 1 TO N
3390 A(J,R)=0:NEXT K:NEXT J:RETURN
3400'
3410'Subroutines for calculation of slice seometry
3420
3430 IF A(4,K)<A(6,K) THEN A(4,K)=A(6,K):A(3,K)=A(5,K)' check water
3440 DSQ = (A(1,K)-A(5,K))^2+(A(2,K)-A(6,K))^2
3450 IF DSQ=0 THEN A(17,K)=0 ELSE A(17,K)=SOR(DSQ) ;d
3460 IF A(2,K)-A(6,K)=0 TREN A(18,K)=0:RETURN
3470 A(18,K)=ATN((A(1,K)-A(5,K))/(A(2,K)-A(6,K))) 'delta
3480 RETURN
3490 A(19,K)=A(5,K+1)-A(5,K) 'b
3500 IF A(19,K)=0 THEN A(20,K)=0:GOTO 3520
3510 A(20,K)=ATN((A(6,K+1)-A(6,K))/A(19,K)) 'alphs
3520 A(21,K)=(A(6,K)-A(2,K+1))*(A(1,K)-A(5,K+1))
3530 A(21,K)=A(21,K)+(A(2,K)-A(6,K+1))*(A(i,K+1)-A(5,K))
3540 A(21,K)=.5*A(10,K)*A(21,K): RETURN
3550 '
3560 'Subroutine for calculation of water forces
3570 '
3580 FOR K=1 TO NUM: ZW(K)=A(4,K)-A(6,K)
3590 ZW(K+1)=A(4,K+1)-A(6,K+1)
3600 A(22,K)=WAT* (2W(K)+2W(K+1))*A(19,K)
3610 A(22,K)=ABS (A (22,K)/COS (A (20,K) )):NEXT K U
3620 FOR K=1 TO N: ZWT(K)=A(4,K)-A(2,K)
3630 IF ZNT(K)>0 THEN 3650
3640 A(23,K)=WAT*ABS (ZW(K)^2/COS (A(18,K))):GOTO 3670 PPW
3650 A(23,K)=WAT* (ZWT(K)+ZW(K))
3660 A(23,K)=A(23,K)*ABS ((A(2,K)-A(6,K))/COS(A(18,K))) 'PW
3670 NEXT K
3680 FOR K=1 TO NUM
3690 IF ZWT(K)>=0 AND 2WT(K+1)>=0 THEN 3700 ELSE 3740
3700 WW(K)=WAT*(ZWT(K)+ZWT(K+1)) 'WW full,
3710 WW(K)=WW(K)*ABS((A(1,K+1)-A(1,K))) , submerged
3720 WH(K)=WAT*(A(2,K+1)-A(2,K))*(ZWT(K)+ZWT(K+1)) 'WH
3730 IF A(2,K+1)<A(2,K) THEN WH(K)=-WH(K):COTO 3840
3740 IF ZWT(K)>=0 AND ZWT (K+1)<=0 THEN 3750 ELSE 3790
3750 WW(K)=WAT*ZWTR(K)^2*(A(1,K+1)-A(1,K)) 'WW side i
3760 IF A(2,K+1)-A(2,K)=0 THEN WH(K)=0:C0T0 3780
3770 WW(K)=ABS(WW(K)/(A(2,K+1)-A(2,K)))
3780 WH(K)=WAT*ZWTI(K)^2:COTO 3840
'submerged

```
3790 IF ZWT(K)<=0 AND ZWT(K+1)>=0 THEN 3800 ELSE 3840
3800 WW(K)=WAT*ZWT(K+1)^2*(A(1,K+1)-A(1,K))
3810 IF A(2,K+1)-A(2,K)=0 THEN Wh(K)=0:GOT0 3830
3820 WW(K)=ABS (WW(K)/(A(2,K+1)-A(2,K)))
3830 WH(K)=-WAT*(ZWT(K+1))^2
3840 NEXT K:PETURN
3850 '
3860' Subroutines for calculation of S,R,Q,C,P and a
3870'
3880 A(29,K)=A(26,K)*A (17,K)-A(23,K)*A(27,K):RETURN 'S
3890 A(28,K)=A(24,K)*A(19,K)
3900 A(28,K)=A(28,K)/COS(A(20,K))-A(22,K)*A(25,K) , R
3910 A(30,K)=\operatorname{CoS}(PB(K)-A(20,K)+PS(K+1)-A(18,K+1))
3920 A(30,K)=\operatorname{CoS(PS}(K+1))/A(30,K)
3930 A(31,K)=A(30,K)*COS(PA(K)-A(20,K)+PS(K)-A(18,K))
3940 A(31,K)=A(31,K)/COS(PS(K))
3950 A(32,K)=A(30,K)*A(21,K)*COS(PB(K)-A(20,K))
:e
3960 A(33,K)=(A(21,K)+TV(K))*SIN(PHALP(K))
3970 A(33,K)=A(33,K)+TH(K)*COS(PHALP(K))
3980 A(33,K)=A(33,K)+A(28,K)*COS(PB(K))
3990 A(33,K)=A(33,K)+A(29,K+1)*SIN(PHALP(K)-A(18,K+1))
4000 A(33,K)=A(33,K)-A(29,K)*SIN(PHALP(K)-A(18,K))
4010 A(33,K)=A(33,K)*A(30,K):RETURN
4020.
4030 ' Calculation of Ec and FOS
4040 '
4050 COSUB 4540
4060 IP FLAG7=1 OR FLAG8=1 THEN 4090
4070 IF F<>1 THEN 4160
4080 IF (Z2+A(32,NMM))=0 THEN ACC(1)=0:GOTO 4230
4090 ACC(1)=(Z3+A(33,NOM))/(22+A(32,NTM)) 'KC
4100 IF FLAG8=1 THEN 4190
4110 ACC=ACC(1):IF FLAG7 = 1 THEN 5290
4120 F=1+3.33#ACC(1) 'FOS estimate
4130 IF F<=0 THEN F=.l
4140 IF F>5 THEN F=5
4150 COTO 3080 recalculate }
4160 ACC(2)=(Z3+A(33,NUM))/(22+A(32,NUM)) , new K
4170 Y=1/F:FS=1-ACC(1)*(1-Y)/(ACC(1)-ACC(2)):POS=1/FS * POS
4180 F=FOS: FLAG8=1: GOTO 3080
4190 PLAG8=0: FLAG4=0: FOR K=1 TO NUM:GOSUB 4810:NEXT K * normeni stresses
4200 FOR K=1 TO MLM:COSUB 4840:NRXT K
4210 IF FLAGI5=1 AND M>=6 THRN 4220 ELSE 4230
4220 FÖCAYE=1:STATU$= =".e": FLAGG=1, FLAGI5=0.* COTO 1950
4240 WSUB 5020: LOCATE 22,7:COLOR 15,0
4250 LOCATE 22,7:COLOR 15.0
4260 PRINT "Acceleration Kc = ";
```



```
4280 LOCATR 22,47:PRINT "Factor of safety = ";
4290 LOCATB 22,66:PRINT USING "料.**"; FOS;:COLOR 7.0
4300 IF FLAG4=0 AND ABS(ACC(2))>.1 THEN 4310 ELSE 4340
4310 LOCATE 23,7:COLOR 15
4320 PRINT "Large extrapolation = plot of fos vs K suggested";
```

```
4330 LOCAT8 23,59:PRINT "to check fos";:COLOR 7,0
4340 IF FLAG4=0 THRN 4410 ELSE LOCATE 23.7:COLOR 15.0
4350 PRINT "Negative effective normal streases -*
4360 LOCATE 23,50:PRINT "solution unacceptable"
4370 COLOR 7.0
4380
4390 * Cantrol of screen displays
4400
4 4 1 0 ~ S T A T U S = " e " : ~ F L A G 1 5 = 0 : C O S U B ~ 4 6 1 0 ~
4420 IF STATUS=*'e" THRN 4440
4430 FLAG6=1:STATUS="e":GOTO 1950
4440 IF FLAG19=1 THEN 4450 ELSE 4460
4450 FLAG21=1: FLAG3=0: FLAG19=0:GOTO 2200
4460 IF FLAG22=1 AND K=7 THEN 447\emptyset BLSE 4480
4470 FLAG23=1: FLAG3=0: FLAG22=0:GOT0 1960
4480 IF FLAG22=1 ANDK)=11 THEN 4490 ELSE 4500 'previous page
4490 FLAG23=1: FLAG3=0: FLAG22=0:COT0 2200
4500 FLAG6=0: FLAG3=0:J=1:K=1:M=1:GOTO 1960
4510
4520 ' Subroutioe for calculation of 4
4530 '
4540 21=1:22=0:23=0
4550 FOR K=NMM TO 2 STEP-1
4560 Z1=21*A(31,K):22=22+A(32,K-1)*Z1
4570 23=Z3+A(33,A-1)*Z1:NEXT K:RETURN
4580
4590 'Display of function key
4600 '
4610 LOCATE 25 l:PRINT "1";
4620 WCATE 25,3:COLOR 0,7:PRINT "print";
4530 COWR 7.0:LOCATE 25.10:PRINT "2":
4640 LOCATE 25,12:COLOR 0,7:PRINT "calculate";
4650 COLOR 7,0:LOCATE 25,23:PRINT "3";
4660 WCATK 25,25:COLOR 0,7:PRINT "fos vs K";
4670 COWR 7,0:LOCATE 25,35:PRINT "4";
4680 LOCATE 25,37:COLOR 0,7:PRINT"drain";
4690 COLOR 7,0:LOCATE 25,44:PRINT "5";
4700 WCATE 25,46:COLOR 0,7:PRINT "file";
4710 COLOR 7,0:LOCATE 25,52:PRINT " 6";
4720 LOCATF 2, FA,COLANS, T.:PRNNET "restart"*
4730 COLOR 7,0:LOCATE 25,63:PRINT "7";
4740 LOCAT8 25,65:COLOR 0,7: PRINT "quit";
4750 COLOR 7,0: LOCATE 25,70:PRINT "8";
4760 LOCATE25,72:COLOR 0,7:PRINT "view";
4770 COLOR 7,0:RETURN
4780'
4790 " Subroutine for calculation of effoctive nonml stremsen
4800
4810 A(34,K+1)=A(33,K)+A(34,K)*A(31,K)-ACC(1)*A(32,K) 'Ei+1
4820 A(35,K)=(A(34,K)-A(23,K))*A(27,K)+A(26,K)*A(17,K) •Xi
4830 RETURN
4840 A(36,K)=A(21,K)+TY(K)+A(35,K+1)*\operatorname{cos (A(18,K+1))}
4850 A(36,K)=A(36,K)-A(35,K)*COS (A(18,K))
4860 A(36,K)=A(36,K)-A(34,K+1) #SIN(A(18, K+1))
```

```
4870 A(36,K)=A(36,K)+A(34,K)*SIN(A(18,K))
4880 A(36,K)=A(36,K)+A(22,K)*A(25,K)*SIN(A(20,K))
4890 A(36,K)=A(36,K)-A(24,K)*A(19,K)*TAN(A(20,K))
4900 A(36,K)=A(36,K)*COS(PB(K))/COS(PHALP(K)) 'Ni
4910 A(37,K)=(A(36,K)-A(22,K)) $A (25,K)
4920 A(37,K)=A(37,K)+A(24,K)*A(19,K)/COS (A(20,K)) 'TSi
4930 A(38,K)=(A(36,K)-A(22,K))*COS (A(20,K))/A(19,K) 'sigma b
4 9 4 0 ~ I F ~ A (1 7 , K) = 0 ~ T H B N ~ A ~ (3 9 , K) = 0 : ~ C O T 0 ~ 4 9 7 0 ~
4950 IF K=1 THENA(39,K)=0:COTO 4970
4960 A(39,K)=(A(34,K)-A(23,K))/A(17,K) 'sigmes
4970 IF A(38,K)<0 OR A(39,K)<0 THEN FLAGG4=1
4 9 8 0 ~ R E T U R N
4990 *
5000,
5010
5020
5030 LOCATE 20,1:PRINT "side stresses"
5040 MEND=M+5:IF MEND<N THEN 5050 ELSEMEND=N
5050 J=38: FOR K=M TO MEND-1: X=23+(10*(K-M)): Y=19
5060 LOCATEY,X:PRINT USING "部辝書.**";A(J,K):NEXT K
5070 J=39: FOR K=M TO MEND: X=18+(10*(K-M)):Y=20
5080 LOCATE Y,X:PRINT USING "********";A(J,K):NEXT K
5090 RETURN
5100
5110 'Calculation of acceleration I for different safety factors
5120
5130 CLS:L=1:GOSUB 1300
5140 LOCATE3,13:PRINT "plot of factor of safety versus acceleration K"
5150 LOCATE 5,19:PRINTT "f.o.s*;
5160 LOCATR 5,32:PRINT "acc. K";
5170 LOCATB 5,44:PRINT "1/f.o.s":PRINT
5180 LOCATE 25,2:PRINT "to terminate calculation press ";
5190 COLOR 0.7:PRINT "ENTER"; :COLOR 7,0
5200 PRINT " in response to prompt for a new value";
5210 Y=7:X=18
5220 LOCATE Y,X:COLOR 0,7:PRINT " ";:COLOR 7,0
5230 LOCATE Y, X: INPUT * ",F$
5240 IF LEN(F$)=0 THEN 5350
5250 IF F$="O" THRN F$=".01"
5260 F=VAL(F$):FL(L)=F
5270 LOCATEY, X:PRINT USING "**.*****"; FL(L)
5280 FLAG7 = 1:GOTO 3080
5290 ACL(L) =ACC(1): L=L+]
5300 IF FLAG30=1 THEN }551
5310 LOCATE Y,31:PRINT USING "**.*骐"; ACC(1)
5320 LOCATEY,42:PRINT USING "****.####";1/F
5330 Y=Y+1: IF Y=24 THEN Y=7
5340 FLAG7 = 0:GOTO 5220
530 FIN=L: LOCATR Y,X:PRINT "
5360 LOCATE 25,2:PRINT STRIMG$(78,"");
5370 LOCATE 25,3:PRINT "FI";:LOCATE 25,6:COLOR 0.7
5380 PRINT "print fosvs K";:COLOR 7.0
5390 LOCATB25,22:PRINT "F2";:LOCATB 25,25:COLOR 0.7
5400 PRINT "return to display of slice data"::COLOR 7.0
```

```
5410 LOCATE 25,59:PRINT "F3*;:LOCATR 25,62:COLOR 0.7
5420 PRINT "restart";:COLOR 7.0
5430 LOCATE 25,71:PRINT "F4"; : LOCATE 25,74:COLOR 0.7
5440 PRINT"quit"; :COLOR 7,0: FLAG16=0
5450 OS=INKBY$: IF OS=" " THRN 5450
5460 IF OS = "a" THEN GOSUB 5550:C0TO 5450
5470 IF QS = "b" THRN 5500
5480 IF OS = "c" THRN 390
5490 IF OS = "d" THEN 6980 ELSE 5450
5500 F= 1: FLAG30= 1: COTO 5280
5510 FLAG30=0: FLAG7=0:STATUS=" 'e": FLAAG6=1: F=1:M=1: GOTO 1950
550 *
550 'Subroutide for printing fos us K
5540*
550 LPRINT: LPRINT: LPRINT: LPRINT
5560 LPRINT TAB(13) "Analysis no. "; :LPRINT TITLES
5570 LPRINT TAB(13) "Plot of factor of safety";
5580 LPRINT TAB(38) "versus acceleration K"
5500 LPRINT:LPRINT TAB(19) "f.o.s";
5600 LPRINT TAB(32) "acc. K";
5610 LPRINT TAB(44) "1/fos":LPRINT
5620 FOR L= }1\mathrm{ T0 FIN-1
5630 LPRINT TAB(18) USING "**.*精䇆; FL(L);
```



```
5650 LPRINT TAB(43) USING "精.制料";1/FL(L):NBXT L
5660 LPRINT: LPRINT: LPRIRT: LPRINT
5670 RETURN
5680 '
5690 'Subroutine for printing array ad reaults
5700
5710 PREVJ =J:PRRVK=K:PREWM=M:FLAG14=0
5720 LPRINT: LPRINT: LPRINT: LPRINT: LPRINT: LPRINT
5730 LPRINT TAB(23) "SARMA NON-VERTICAL SLICE ANALYSIS": LPRINT
5740 LPRINT "Analysis no. ": : LPRINT TAB(14) TITLES
5750 LPRINT:LPRINT "Unit weight of water =";
5760 LPRINT TAB (23) WATER: X1-1: X2 =N
5770 IF X2>6 THEN X2=X1+5
5780 Tl-20: LPRINT: LPRINT "Side number";
5790 FOR X=X1 TO X2: LPRINT TAB(T1);: LPRINT USING "***; X;
5800 Tl=T1+10:NBXT X:X3=X2
5810 IF X2=N THEN LPRINT
5820 Tl=16: LPRINT "Coordinate xt";:J=1:COSUB 6220
5830 TI=16:LPRINT "Coordinate yt";:J=2:GOSUB }622
5840 Tl=16:LPRINT "Coordinate xw";:J=3:COSUB 6220
5850 Tl=16: LPRINT "Coordinate yw";: J=4:COSUB }622
5860 Tl=16:LPRINT "Coordinate xb"::J=5:COSUB 6220
5870 Tl=16: LPRINT "Coordinate yb"; : J=6: COSUB }622
5880 Tl=16: LPRINT "Friction angle"; : J=7:COSUB }622
5890 Tl=16: LPRINT "Cohesion";: J=8:GOSUB 6220
5900 Tl=25: LPRINT: LPRINT "Slice number";
5910 IF X2=N TREN X3=N-1 ELSE X3=X2
5920 FOR X=X1 TO X3:LPRINT TAB(T1);:LPRINT USING 'm*** X;
5930 Tl=Tl+10:NEXT X
5940 IF X2=N THRN LPRINT
```

```
5950 Tl=21:LPRINT "Rockunit weight";:J=10:COSU8 6220
5960 Tl=21:LPRINT"Frictionangle";:J=11:COSUB 6220
5970 Tl=21:LPRINT "Cohesion"; :J=12:GOSUB 6220
5960 Tl=21:LPRINT "ForceT"::J=15:GOSUP 6220
5990 T1=21:LPRINT "Angletheta";:J=16:GOSUB 6220:LPRINT
6000 LPRINT "Effective normal stresses"
6010 T1=21:LPRINT "Base";:J=38:COSUB 6220
6020 T1=16:LPRINT "Side"; J=39:COSUB 6220:LPRIRT:LPRINT
6030 IF X2=N THIRN 6100
6040 IF X2<N THEN X1=X1+6: X2=N
6050 IF X2<Xl+5 TYEN 6060 ELSE X2=X1+5
6060 IF X1=13 OR X1=27 THRN 6080
6070 LPRINT: LPRINT: COTO 5780
6080 LPRINT:LPRINT: LPRINT:LPRINT:LPRINT
6090 LPRINT:LPRINT: LPRINT:LPRINT:GOT05780
6100 LPRINT TAB(7) "Acceleration Kc = ";
6110 LPRINT TAB(27);:LPRINTUSING "##.****";ACC;
6120 LPRINT TAB(47) "Factorof Safety = ";
6130 LPRINT TAB(66);:LPRINT USING"**.*#"; FOS
6140 IF FLAG4=0 THEN 6170
6150 LPRINT TAB(7) "Negativteffective normal stresses";
6160 LPRINT TAB(45) "- solutionunacceptable":C0T06200
6170 IF FLAG4=0 AND ABS(ACC(2))<.l THEN 6200
6 1 8 0 ~ L P R I N T ~ T A B (7) ~ " L a r g e ~ e x t r a p o l a t i o n ~ - ~ p l o t ~ o f ~ f o s " ;
6190 LPRINT TAB(44) "va K suggested to check fos"
6200 J=PREVJ-1:K=PREVK:N=PREYM
6210 LPRINT: LPRINT: LPRINT: RETURN
6220 FORR=X1 TO X3:LPRINT TAB(TI);:GOSUB }624
6230 T1=T1+10: NEXT K: LPRINT: RRTURN
6240 IF A(J,K)=0 THEN }626
6250IF ABS(A(J,R))>99999: OR ABS(A(J,K))<8.999999R-03 THEN 6270
6260 LPRINT USING"*****.*#";A(J,K);:RETURN
6270LPRINT USING "**.**^^nn";A(J,K);:RETURN
6260,
6290'Storage ofdats an disk file
6300 '
6310 CLS:LOCATB 8,1:PRINT STRINGS(80,45)
6320 PRINT:PRINT "Sarma data files on disk";
6330 PRINT:FILES "A:SAPMA*,DAT":PRINT:PRINT STRING$(80,45):PRINT
6340INPUT "Enterfilename (without extension): ",FILE$
6350 OPEN "A:"+FILSS+".DAT" FOR OUTPUT AS #2
6360 PRINT*2,TITLB$:PRINT $2,N:WRITE*2, WATER
6370 WRITE$2, FLAG2:WRITE$2,FLAG3:WRITE#2,FLAG4
6380 FOR X=1 TO N: FOR J=1 TO 39:WRITE*2, A(J,K):NEXT J:NEXT K
6390 WRITB*2,ACC:WRITE*2,ACC(2):WRITE*2, FOS:CLOSE*2
6400 FLAG6=1:STATUS="e":F=1:M=1: FLAG17=0:GOT01950
6410'
6420'Grapbical display of geometry
6430,
6440 SCRRBN 1,1:COLOR 8,1:XA=0: XB=0:YA=0:YB=0
6450 JMIN=1: JMAX=5: DJ=2: KMIN=1: MMAX=N
6460 DK=N-1:GOSUB 6830: XMIN=MIN M
6470 JMIN=1:JMAX=5:DJ=2:KMIN=1:KMAX=N
6480 DE=N-1:GOSUB 6910: XMAX=MAX NAX=N (max x
```

6490	JMIN =2: JMAX =6: DJ = 2: KMIN = 1: MMAX = N	
6500	DK=1: $\operatorname{COSUB} 6830$ : MMIN=MIN	$\cdots \sin y$
6510	JMIN=2: JMAX =6: DJ =2: RMIN=1: MMAX=N	
6520	DK=1: COSUB 6910: MMAX=MAX	$\cdots$ mer $y$
6530	XSC $=270 /($ XMAX - XMIN $)$ : YSC $=160 /($ YMAX -YMIN )	'scale factor
6540	IF XSCくYSC TREN 6560	
6550	SC=YSC: COTO 6570	
6560	sc=xsc	
6570	LNY=199	
6580	XADJ $=(319 / S C-($ MMAX -XMIN $)) / 2$	'center plot
6590	YADJ $=(199 / S C-($ MAX - YMIN $)) / 2$	
6600	XMIN = XMIN-XADJ : YMIN=YMIN-YADJ	
6610	FOR K=1 TO N-1	
6620	$X_{A}=(A(1, K)-X M Y N) * S C: Y A=L N Y-(A(2, K)-Y M I N) * S C$	
6630	$X B=(A(1, K+1)-X M I N) * S C: Y B=L N Y-(A(2, K+1)-Y M I N) * S C$	
6640	LINE (XA,YA) - (XB, YB), 3	'top surface
6650	$X A=(A(5, K)-X M Y N) * S C: Y A=L N Y-(A(6, K)-M M I N) * S C$	
6660	$X B=(A(5, K+1)-X M I N) * S C: Y B=L N Y-(A(6, K+1)-Y M I N) * S C$	
6670		'failure surface
6680	$X_{A}=(A(1, K)-X M I N) * S C: Y A=L N Y-(A(2, K)-Y M I N) * S C$	
6690	$X B=(A(5, K)-X M L N) * S C: Y B=L N Y-(A(6, K)-Y N I N) * S C$	
6700	LINE (XA, YA)-(XB, YB ) , 3	'slice sides
6710	$X_{A}=\left(A(3, K)-X_{O M I N}\right) * S C: Y A=L N Y-(A(4, K)-M M I N) * S C$	
6720	$X B=(A(3, K+1)-X M I N) * S C: Y B=L N Y-(A(4, \$+1)-Y M I N) * S C$	
6730	LINE (XA, YA)-(XB, YB ) , 1	'water surface
6740	NEXT K	
6750	$X A=(A(1, N)-X O M I N) * S C: Y A=L N Y-(A(2, N)-Y M I N) * S C$	
6760	$X B=(A(5, N)-X M I N) * S C: Y B=L N Y-(A(6, N)-Y M I N) * S C$	
6770	LINE (XA, YA)-(XB, YB ) , 3	' nth slice side
6780	LOCATE25,9:PRINT "press any key to return";	
6790	IF LEN(INKRY\$) =0 THEN 6790	
6800	FLAG27=0:SCREEN 0,0,0:WIDTH 80	'reset screen
6810	STATUS = "e" : FLAG6=1:F=1:M=1:G0T0 1950	'return
6920		
6830	, Subroutine to fiod MrN in range	
6840		
6850	MIN=A (JMIN, KMIN)	
6860	FOR J=JMIN TO JMAX STEP DJ	
6870	FOR K=KMIN TO KMAX STEP DK	
6880	IF MIN>A $\mathbf{J}, \mathbf{K})$ THEN MIN=A(J,K)	
6890	NBXT K: NEXT J: RETURN	
6900	-	
6910	- Subroutide to fiod Max in raoge	
6920	- ${ }^{\text {a }}$	
6930	MAX $=$ ( (JMIN, KMIN)	
6940	FOR J J Jin To JMax STEP DJ	
6950	FOR K=KMIN TO KMAX STEP DK	
6960	IF MAX<A(J,K) THEN MAX=A ( $\mathbf{~}, \mathrm{K}$ )	
6970	NEXT K: NBXT J: RETURN	
6980	CLS : END	

A8-1

## Appendix 8

## LIST OF PRACTICUMS

Prsct lcum 1 :	Stereo plots of structural geology data	2
Practicun II:	Stability evaluation related to structural geology	9
Practicun III:	Analysis of direct shear strength test results	14
Practicum IV:	Analysis of point load tort results	16
Practicum V:	Influence of geology and weather conditions on groundwater levels	16
Practicum VI:	Calculation of permeability from falling head test resu lts	19
Practicun VI I :	Plane failure - analysis and stabilization	20
Practicum VIII:	Wedge failure analysis	25
Practicun IX:	Clrcular failure analysis	26
Practicun X :	Toppling failure analysis	29
Practicun XI :	Blast design	31
Practicun XI I:	Design of controlled blasting pattern	52
Practicun XIII:	Control of damage from blast vibrations	33
Practicun XIV:	Plotting and interpretation of movement monitoring results	54

PRACTICLM I
Stereo plots of structural geology data

Given: A structural geology mapping program for a proposed highway produced the following results for the orientation of the fractures (format-diD/dio direction).
$40 / 080$
$45 / 090$
$20 / 160$
80310
$83 / 312$
$82 / 305$
$23 / 175$
$43 / 078$
371083
$20 / 150$
$21 / 151$
$39 / 1074$
$70 / 300$
$75 / 305$
$15 / 180$
$80 / 010$
$31 / 081$

Required:

(a) Plot the orientation of each fracture as a pole on a stereo-net using the equal area net and tracing paper provided.
(b) Estimate and plot the position of the mean pole of each set of fractures.
(c) Determine the maximum concentration of each set of poles using the Denness type B cell counting net.
(d) Determine the angle between the mean poles with the steepest and shal lowest dips.
(e) Draw great circles of the three mean poles on a separate piece of tracing paper.
(f) Determine the dip and trend of the line of intersection between the joint sets with the steepest and intermediate dip angles.

PRACTICLMI - SOLUTION
Stereo plots of structural geology data

Methods of plotting stereo plots are described in Chapter 3 of the manual.
(8) The poles of the 17 planes are plotted on Figure I-I which shows that there are three sets of fractures.
(b) The mean pole of each of the three fracture sets ls as follows:

> Set $1=78 / 305$
> set $2=40 / 081$
> set $3=20 / 163$

There is one pole ( $80 / 010$ ) that does not belong to any of the three fracture sets.
(c) The maximum concentration of each set of poles ls found using Figure 3.6 in the manual.

> set $1-4$ poles out of 17 poles $=248$
> set $2-5$ poles out of 17 poles $=298$
> Set $3-4$ poles out of 17 poles $=248$

A computer plot of this data is shown in Figures $\mathbf{i - 2 a}, \mathbf{b}, \mathbf{c}$.
(d) The angles between the mean poles of joint sets 1 and 3 is determined by rotating the stereo-net until both mean poles I ie on the same great circle. The number of divisions on this great circle is 94 degrees as shown by the dotted I ine on Figure I-I.
(o) The great circles of the three mean poles are plotted on Figure 1-3.
(f) The dip and trend of the line of intersection of joint sets 1 and 2 is also shown on Figure l-3. The values are as follows:

```
\(\begin{array}{ll}\text { Dip, } \\ \text { Dipdirection }, \alpha_{i} & =029^{\circ}\end{array}\)
```



Figure 1.1: Plot of poles of structural mapping data.



## **SYEREO** BO215800 - FEDERAB HIGMWAY - GEULOGY DATA.

```
TMAVERSE -* all dATA
```

17 GKIGINal POLES	
$x$	$x$
$x$	$x$

$x$ **
$x$
n
x
n

X

X
$\mathbf{x}$





 - * *


Practicum I Solution Stereoplots

Figure I. 2 c

A8-8


Less than $\varnothing . \varnothing 1$	Description
$\mathbf{0 . 0 1}$ to $\mathbf{0 . 1}$	Exceptionally Poor
$\mathbf{0 . 1}$ to $\mathbf{1}$	Extremely Poor
$\mathbf{1}$ to $\mathbf{4}$	Very Poor
$\mathbf{4}$ to $\mathbf{1 0}$	Poor
$\mathbf{1 0}$ to $\mathbf{4 0}$	Fair
$\mathbf{4 0}$ to $\mathbf{1 0 0}$	Good
$\mathbf{1 0 0}$ to $\mathbf{4 0 0}$	Very Good
More than $\mathbf{4 0 \varnothing}$	Extremely Good

## A9-8

TABLE 2 (Continued)
NGI CLASSIFICATION SYSTEM
cl Squeezing rock, plastic flow of incompetent
rock under the influence of high rock pressure.

| N. Mild squeezing rock pressure | $\mathbf{5 - 1 0}$ |
| :--- | :--- | ---: |
| 0. Heavy squeezing rock pressure | $\mathbf{1 0 - 2 0}$ |

d) Swelling rock, chemical swelling activity
dependling on presence of water
P. Mild swelling rock pressure $\quad \mathbf{5 - 1 0}$
R. Heavy swelling rock pressure 10-20
additional notes on the use of these tables

When making estimates of the rock mass quality $(Q)$ the following guidelines should be followed, in addition to the notes listed in the tables:

1. When borehole core is unavailable, $R Q D$ can be estimated from the number of joints per unit volune. in which the number of joints per metre for each joint set are added. A simple relation can be used to convert this number to $\mathbf{R Q D}$ for the case of clay free rock masses:

RQD $=115$ - 3.3Jv (approx.)

## where $J_{y}=$ total number of joints per $\mathbf{m}^{\mathbf{3}}$

(RQD $=100$ for $J_{v}<4.5$ )
2. The parameter Jn representing the number of joint sets will often be affected by foliation, schlstosity, slaty cleavage or bedding etc. If strongly developed, these parallel "joints" should obviously be counted as a complete joint set. However, if there are few "joints" visible, or only occasional breaks in the core due to these features, then it will be more appropriate to count them as "random joints" when evaluating $\mathrm{J}_{\mathrm{n}}$.
3. The parameters $\mathbf{J}_{\mathbf{r}}$ and Ja (representing shear strength) should be relevent to the weakest significant joint set or clay filled discontinuity in the given zone. However, if the joint set or discontinuity with the minimum value of ( $\mathrm{J}_{\mathbf{r}} / \mathrm{J}_{\mathrm{a}}$ ) is favourably oriented for stability, then a second, less favourably oriented joint set or discontinuity may sometimes be more significant, and its higher value of $\mathrm{J}_{\mathrm{r}} / \mathrm{J}_{\mathrm{a}}$ should be used when evaluatling $\mathbf{0}$. The value of $J_{r} / J_{a}$ should in fact relate to the surface most likely to allow failure to initiate.
4. When a rock mass contains clay, the factor SRF appropriate to loosening loads should be evaluated. In such cases, the strength of the intact rock is of llttle interest. However, when jointing is minimal and clay is completely absent the strength of the intact rock may become the weakest link, and the stability will then depend on the rock-stress/rock-strength. A strongly anisotropic stress field is unfavourable for stability and is roughly accounted for as In note 2 in the table for stress reduction factor evaluation.
5. The compressive and tensile strengths ( $\sigma_{c}$ and $\sigma_{t}$ ) of the intact rock should be evaluated in the saturated condition If this is appropriate to presentor future In situ conditions. A very conservative estimate of strength should be made for those rocks that deteriorate when exposed to moist or saturated conditions.

## TABLE 2 (Continued)

## NGI CLASSIFICATION SYSTEM

5. JOINT WATER REDUCTION FACTOR
A. Dry excavations or minor inflow, i.e. < 5 lit/min. locally.
B. Medium inflow or pressure, occasional outwash of joint fillings
c. Large inflow or high pressure in competent rock with unfilled joints

0 . Large inflow or high pressure, considerable outwash of fillings
$\mathrm{J}_{\mathbf{w}} \quad$ approx. water pressure ( $\mathrm{Kgf} / \mathrm{cm}^{2}$ )
$1.0<1.0$
$0.661 .0-2.5$
0.5 2.5-10.0
0.33
$2.5-10.0$
E. Exceptionally high inflow or pressure at blasting. decaying with time.
F. Exceptionally high inflow or pressure continuing without decay
$0.1-0.05>10$
6. STRESS REDUCTION FACTOR
al Weakness zones are intersecting excavation, which may cause loosening of rock mass when tunnel is excavated.
A. Multiple occurrences of weakness tones containing clay or chemically disintegrated rock, very loose surrounding rock (any depth)

SRF

B'. Single weakness zones containing clay, or chemically disintegrated rock (excavation depth < 50 m ) 5.0
C. Single weakness zones containing clay, or chemically disintegrated rock (excavation depth $>50 \mathrm{ml}$
2.5
D. Multiple shear zones in competent rock (clay free), loose surrounding rock (any depth)
7.5
E. Single shear zones in competent rock (clay free), (depth of excavation < 50 m )
5.0
F. Single shear zones In competent rock (clay free). (depth of excavation $>50 \mathrm{ml}$
2.5
G. Loose open joints, heavily jointed or 'sugar cube' (any depth)
b. Competent rock, rock stress problems
H. Low stress, near surface $\quad>200 \quad>13 \quad 2.5$
J. Medium stress

200-10 13-0.661.0
K. High stress, very tight structure (usually favourable to stability, may be unfavourable for wall stability

10-5 Ø. 66-0. 33 Ø.5-2
L. Mild rock burst (massive rock)

5-2.5 0.33-0.16 5-10
M. Heavy rock burst (massive rock)
< 0.16
$10-20$
3. Few case records available where depth of crown below surface is less than span width. Suggest SRF Increase from 2.5 to 5 for such cases (see H).

## MGI CLASSIFICATION SYSTEM

4. JOINT ALTERATION NUMBER

Ja $\sigma_{r}($ approx. $)$
a. Rock wall contact.
A. Tightly healed, hard, non-
softening, imperweable filiing 0.75
B. Unaltered joint walls, surface staining only
$1.0 \quad\left(25^{\circ}-35^{\circ}\right)$
C. Slightly altered jolnt walls nonsoftening mineral coatings, sandy particles, clay-free dlsintegrated rock, etc.
D. Silty-, or sandy-clay coatings, small cl ay-fraction (nonsof tening)
$3.0 \quad\left(20^{\circ}-25^{\circ}\right)$

1. Values of Or, the residual friction angle, are intended as an approximate guide to the mineralogical properties of the alteration products, If present.
E. Softenlng or low friction clay mineral coatings, I.e. Kaollnlte, mica. Also chlorite, talc, gypsum and graphite, etc., and small quantltlcs of swelling clays. (Discontinuous coatings, 1-2. or less in thickness.)
D) Rock wall contact before 10 cms shear.
F. Sandy particles, clay-free dislntegrated rock, etc.
$4.0 \quad\left(25^{\circ}-30^{\circ}\right)$
G. Strongly over-consolidated, nonsoftenlng clay mineral fllilngs (continuous. < 5 thick).
$6.0 \quad\left(16^{\circ}-24^{\circ}\right)$
H. Medium or low over-consolidation softening, clay mineral fillings (continuous. < 5 minick).
$8.0 \quad\left(12^{\circ}-16^{\circ}\right)$
J. Swelling clay flll1ngs, i.e. montmorillonite (continuous, < 5 min thick). Values of Ja depend on percent of swelling clay-size particles, and access to water.
```
8.0-.2.0 (6' - 12*)
```

c) No rock wall contact when sheared.
K. Zones or bands of disinte gated

L. or crushed rock and clay (see 6 ,
M. H and J for clay conditions).
W. Zones or bands of silty- or sandy-clay, small clay fraction, ( non-softening).

## 5.0

Ø. Thick, continuous zones or
P. bands of clay (see G, H, and
10.0-13.0
R. J for clay conditions).

TABLE 2
NGI CLASSIFICATION SYSTEM


TABLE I - CSIR GEOMECHANICS CLASSIFICATION OF JOINTED ROCK MASSES A. CLASSFICATION PARAMETERS AND THER RATMGS

PARAMETER			RANEES OF VALUES						
1	Strengith of intact rock meterial	Poind lood Brimgith thdex	18 MPo	4-8 M	2-4 MPo	1-2 MPo		$\begin{aligned} & \text { us tow } \\ & \text { not comper } \\ & \text { p! is peft } \end{aligned}$	ronge forred
		$\begin{gathered} \text { Uniosiol } \\ \text { compretsive } \\ \text { fenoth } \end{gathered}$	) 200 MPo	100-200 MPo	50-100 MPO	25-50MPD	$\begin{gathered} 10-25 \\ \text { MPO } \\ \hline \end{gathered}$	$\begin{aligned} & 3-10 \\ & \text { MPO } \end{aligned}$	$\begin{aligned} & 1-3 \\ & \text { MPO } \end{aligned}$
	Rating		5	12	7	4	2	1	0
2	Orill core suolity ROD		90\%-100\%	75\%-90\%	50\%-75\%	25\%-50\%		<25\%	
	Proting		20	17	13	0		3	
3	Spocing of jemts		33m	$1-3 \mathrm{~m}$	0.3-1m	50-300 mm		( 50 mm	
	Roting		30	25	20	10		5	
4	Condition of joints		Very rough urfoces   Hor ctantmucus   No seporction   Hord joint woll rock	Slighty rough murtases Seporation (1 mm Mord joure wall rock	Slightly rough withow Seportion 《1 mm Sofl pore woll rock	$\begin{aligned} & \text { Sicheneded surfoces } \\ & \text { Gave < } 5 \mathrm{~mm} \text { thich } \\ & \text { a fonts open } 1-5 \mathrm{~mm} \\ & \text { Commuous pints } \end{aligned}$	$\begin{gathered} \text { Sot ger } \\ o r \\ \text { Joints } \\ \text { Contir } \end{gathered}$		m mack   5 mm   oints
	Rating		25	20	12	6		0	
5	Ground water	inflow par 10 m tumel length	None		(25 litres $/ \mathrm{min}$OR $\frac{0.0-02}{\text { Moist only }}$(intersfitiol moter)	$\qquad$   OR   Wor er under moderte pressure	$\operatorname{OR} \frac{>125 \text { litres } / \mathrm{mm}}{20.5}$		
		Generel conditions							
	Raing		10		7	4		0	

## B. RATING ADJUSTMENT FOR JOINT ORIENTATIONS

Strike ond dip   orientations of jeints		Very fovourable	Fovourabie	Foir	Unfovaurable	Very unfovourable
Roings	Tunnels	0	-2	-5	-10	-12
	Foundations	0	-2	-7	-15	-25
	Slopes	0	-5	-25	-50	-60

C. ROCK MASS CLASSES DETERMINED FROM TOTAL RATINGS

Rating	$100-81$	$60-61$	$60-41$	$40-21$	120
Class No	1	11	111	IV	V
Description	Very good rock	Good reck	Foir rock	Poor roek	Very poer rock

the orientations of many types of excavation can be, and normally are, adjusted to avoid the maximum effect of unfavorably oriented major joints. However, this choice is not available in the case of tunnels, and more than half the case records were in this category. The parameters Jn, Jr and Ja appear to play a more important general role than orientation, because the number of joint sets determines the degree of freedom for block movement (if any), and the frictional and dilational characteristics can vary more than the down-dip gravitational component of unfavorably oriented joints. If joint orientation had been inc luded, the classification would have been less general, and its essential simplicity lost'.

The general relationship of qualitative rock classes to the value of $Q$ are presented on Table 2.
several times this size and the smallest fragments less than half the size. (Clay particles are of course excluded.)

The second quotient ( $\mathrm{Jr} / \mathrm{Ja}$ ) represents the roughness and frictional characterlstics of the joint walls or $f$ i ling materials. This quotient is weighted in favor of rough, unaltered joints in direct contact. It is to be expected that such surfaces wi I l be close to peak strength, and that they will therefore be especially favorable to tunnel stabi I ity. When rock joints have thin clay mineral coatings and fillings, the strength is reduced significantly. Nevertheless, rock wall contact after small shear displacements have occurred may be a very important factor for preserving the excavation from ultimate failure. Where no rock wall contact exists, the conditions are extremely unfavorable to tunnel stability. The "friction angles" given in Table 2 are slightly below the residual strength values for most clays, and are possibly downgraded by the fact that these clay bands or fillings may tend to consolidate during shear, at least if normally consolidated or if softening and swelling has occurred. The swell ing pressure of montmorllionite may also be a factor here.

The thlrd quotient (Jw/SRF) consists of two stress parameters. SRF Is a measure of:
(1) loosening load in the case of an excavation through shear zones and clay bearing rock,
(2) rock stress in competent rock, and
(3) squeezing loads in plastic incompetent rocks.

It can be regarded as a total stress parameter. The parameter Jw is a measure of water pressure, which has an adverse effect on the shear strength of joints due to a reduction in effective normal stress. Water may, in addition, cause softening and possible outwash in the case of clayfilled joints. It has proved impossible to combine these two parameters in terms of interblock effective normal stress, because paradoxically a high value of effective normal stress may sometimes signify less stable conditions than a low value, despite the higher shear strength. The quotient ( $J w / S R F$ ) is a complicated empirical factor descri bing the "active stresses".

It appears that the rock tunnel I ing quality $O$ can now be considered as a function of only three parameters which are crude measures of:
(1) block size (RQO/Jn)
(2) interblock shear strength (Jr/Ja)
(3) active stress (Jw/SRF)

Undoubtedly, there are several other parameters which could be added to improve the accuracy of the classification system. One of these would be joint orientation. Although many case records include the necessary information on structural orientation in relation to excavation axis, it was not found to be the important general parameter that might be expected. Part of the reason for this may be that

## Append ix 9 Rock mass classif ication systems

## Introduction

Rock mass classification systems have been developed in order to relate the performance of excavations made in different rock masses. These empirical systems quantify those factors which affect the performance of rock which are then combined to produce a rating number. The relationship between this rating nunber and the strength of the rock mass is given in Table iV on page 5.26.

The two most widely used classification systems are those developed by the Council for Scientific and Industrial Research (CSIR) in South Africa and the Norwegian Geotechnical Institute (NGI). These systems are described on the following pages:

## CSIR Classification

The CSIR Geomechanics Classification for jointed rock masses, by Bieniawski, considers the strength of the intact rock, RQD, joint condition, and groundwater conditions. It recognizes that each parameter does not necessarily contribute equally to the behavior of the rock mass. Bieniawski therefore applied a series of importance ratings to his parameters. A number of points or a rating is allocated to each range of values for each parameter and an overall rating for the rock mass is arrived at by adding the ratings for each of the parameters. Table 1 presents the CSIR system including the rating adjustment for joint orientation (Part B) and qualitative descriptions for each rock class (Part C).

In applying data to the CSIR system, the following parameter classifications are used:

```
Intact rock strength
Joint spacing
Effect of joint orientations
```

NGI Classification
Barton, Lien and Lunde of the Norwegian Geotechnical Institute (NGI) proposed an index (Q) for the determination of the tunnelling quality of a rock mass from an evaluation of a large nunber of case histories. The numerical value of this index $Q$ is defined by:

$$
Q=\frac{R Q D}{J n} \times \frac{J r}{J a} \times \frac{J w}{S R F}
$$

and the definition of these parameters is presented in Table 2.
In explaining how they arrived at the equation used to determine the index $Q$, Barton, Lien and Lunde offer the following comments:
"The first quotient ( $R Q D / J n$ ), representing the structure of the rock mass, is a crude measure of the block or part it le size, with the two extreme values (100/0.5 and 10/20) differing by a factor of 400 . If the quotient is interpreted in units of centimeters, the extreme "particle sizes" of 200 to 0.5 cm are seen to be crude but fairly realistic approximations. Probably the largest blocks should be


Figure $\overline{\text { IPI }}$ 1: Slope movement monitoring.

## A8-34

PRACTICUM XIV
Plotting and interpreting movement monitoring results

In order to obtain a warning of failure of a potentially unstable slope, a surface movement monitoring system has been set up using EDM equipment. The distances between the base station and the fastest moving prism measured at monthly intervals with this equipment on the slope are as fol lows:

Month	Distance
2	822.83
3	822.51
4	821.52
5	820.54
6	819.92
7	818.82
8	818.24
9	814.63
10	814.30
11	813.65
12	812.34
13	810.37
	796.59

Required:

Plot the slope movement against time to determine the months in which acceleration occurs and the onset of slope failure.

PRACTICUM XIV = SOLUTION
Plotting and interpreting movement monitoring results

The data for the cumulative slope movement against time is as fol lows:

Month	Distance
	0
2	0.32
3	1.31
4	2.29
5	2.91
6	4.01
7	4.59
8	8.20
9	8.53
10	9.18
11	10.49
12	12.46
13	26.24

A plot of this data is shown on Figure XIV-I. This plot shows that acceleration occurs in months 8 and 12 and that the onset of fai lure occurs in month 13.

PRACTICUM XIII
Blast damage control

Given: A rock slope for a highway is to be excavated by blasting. An unI ined railroad tunnel runs parallel to and 150 ft . from the center of the rock to be blasted and it is imperative that there be no damage to the tunnel. At one end of the tunnel there is some sensitive electrical switching equipment that must also be protected from blast vibration damage.

Required:
(a) Determine the maximum allowable charge weigh? per delay to assure that the blast vibrations are below the damage threshold values for the tunnel and the electrical equipment.
(b) If the blast hole diameter is 51 mm (2 inches), would it be necessary to protect the electrical equipment from flyrock damage?

## PRACTICUM XIII - SOLUTION

Blast damage control

Methods of control $I$ ing blast damage are described in the third part of Chapter 11.
(a) Allowable charge weights per delay are determined from damage threshold vibration levels for different structures listed on page 11.37 and from equation (124) on page 11.34. me equation for the allowable charge weight per delay is:

$$
V \cdot A(R / \sqrt{N})^{B}
$$

If $k=200$ and, $\&=-1.5$ and the threshold for uck fal is in unlined tunnels is $12 \mathrm{in} / \mathrm{sec} .$, then at $R=150 \mathrm{ft}$. , the al lowable instantaneous charge is:

$$
W=530 \mathrm{lb} / \text { delay }
$$

If the threshold for damage to the electrical equipment is 0.5 in/sec., the allowable Instantaneous charge is:
$W=7-1 / 2 \mathrm{lb} /$ delay
Note: Figure 11.16 can also be used to determine allowable charge weights.
(b) Fran Figure 11.18 boulders as big as 3 ft . ( 1 m ) in dlameter could be thrown 150 ft . ( 45 m ) when using a 2 inch ( 51 mm ) diameter drill hole. Therefore, the electrical equipment should be protected from flyrock with blast mats.

PRACTICUM XI I
Control led blasting design

Given: A 20 ft. high slope has been excavated for a highway by blasting and in one section, where the rock is weak, it is required that the face be trimmed back by 8 ft . It is necessary that control led blasting be used for this trimming operation to ensure there is no overbreak and that the new face is stable.

Required:
(a) What is the most appropriate type of controlled blasting for this operation?
(b) If the diameter of the blast holes is $2-1 / 2$ inches, what hole spacing and explosive charge (lb/tt. of hole) should be used for the final line of holes?
(c) If the only explosive available has a diameter of 1 inch and a specific gravity of 1.1 , determine how the exp losive can be distributed in the hole to achieve the required change.
(d) Is it necessary that a second row of blast ho les be dr i led between the present face and the finalline? lf this is necessary, how far should this row be from the final line and what detonation sequence should be used?

PRACTICUMXiI - SOLUTION
Controlled blasting design

Methods of controlled blasting are described in the second part of Chapter:1.
(a) Cushion blasting should be used to remove the 8 ft. thick slice of rock. In highway construction, it is rarely necessary to use line drilling because it is expensive and is only used where very high quality slopes are required. Preshearing would be used where the burden is about equal to the cut height. Refer to Figures 11.8, 11.10 , and 11.12 for typical hole layouts.
(b) For a hole diameter of 2-1/2 inches in weak rock, a spacing of 3 ft. and an explosive load of $0.1 \mathrm{lb} / f t$. should be used (see Table V(I).
(c) The weight per foot of the diameter explosive is calculated as fol lows;

$$
\begin{aligned}
\text { Weight/ft. } & =\text { density } x \text { area } \\
& =1.1 \times 62.4 \times 7 \text { (diameter) } 2 / 4 \\
& =0.37 \mathrm{lb} / \mathrm{ft} .
\end{aligned}
$$

Because the required charge is 0.1 l b/f +., spacers must be used between sticks of explosive to distribute the charge uniformly up the hole. A suitable charge would be 4 inch long sticks separated by 8 inch long spaces.
(d) Table VI I shows that the burden between the final ine and the next row of holes should be 4 ft . Therefore, a row of holes should be drilled midway between the face and the final line. This row would be detonated before the final line and the final line would be detonated on a single delay.

PRACTICUM XI
Blast design

Given: A 20 ft . high rock bench is to be excavated by blasting. The blast holes will be 2-1/2inches in diameter and the explosive to be used has a specific gravity of 1.3 and is available in diameter of $1-1 / 2$ inches and 2 inches. The broken rock will be mucked by a front-end loader with a maximum vertical reach of 16 ft .

Reouired:
(a) Determine a suitable blast hole pattern, i.e. the burden spacing and length of the holes.
(D) Determine the depth of subgrade drilling required.
(c) Determine a suitable specific charge (lb/yd ${ }^{3}$ ), from Figure 11.5 in the manual, and the required explosive load per hole.
(d) Determine the length of explosive column so that the length of unloaded hole is approximately equal to the burden.

PRACTICUM XI - SOLUTION
BIast design

Methods of blast design are described in Chapter 11.
(a) This bench can be blasted in a single lift because most percussion drills can drill to a depth of 20 ft . with good directional control and penetration rate and it would not be dangerous for the loader to dig a 20 ft . high muck pile.

From Figure 11.5 a burden of about 7 ft. will produce maximum boulder sizes of about 3 ft . which can be readily handled by a loader. If the spacing/burden ratio is 1.25 , the spacing is:

$$
\begin{aligned}
\text { Spacing } & =7 \times 1.25 \\
& =9 \mathrm{ft} .
\end{aligned}
$$

(b) The subgrade depth is usually about one-third of the burden, so the holes should be drilled about 2.5 ft . below the required first grade. Therefore, the required hole depth is 22.5 ft .
(c) From Figure 11.5, a powder factor of $0.6 \mathrm{lb} / \mathrm{yd}^{3}$ will produce the required fragmentation at a burden of 7 ft . The explosive load per hole is calculated as follows:

$$
\begin{aligned}
\text { Volume of rock per hole } & =20 \times 7 \times 9 / 27 \\
& =46.7 \mathrm{cu} . \mathrm{yd} . \\
\text { Explosive per hole } & =46.7 \times 0.6 \\
& =28 \mathrm{lb} .
\end{aligned}
$$

The weight of explosive per foot of drill hole is calculated as fol lows:

$$
\begin{aligned}
\text { Weight/ft. } & =\text { density } \times \text { area } \\
& =1.3 \times 62.4 \times \pi /(e x p l o s i v e ~ d i a m e t e r) ~ \\
& =1.77 \mathrm{lb} / f t .-2 \text { inch diameter explosive } \\
& =1.0 \mathrm{lb} / \mathrm{ft} .=1-1 / 2 \text { inch diameter explosive }
\end{aligned}
$$

The length of explosive column is calculated as follows:

$$
\begin{aligned}
\text { Column length } & =\text { explosive weight/weight per ft. } \\
& =16 \mathrm{ft} \\
& =2 \text { inch diameter explosive } \\
& =28 \mathrm{f}+-1-1 / 2 \text { inch diameter explosive }
\end{aligned}
$$

Because the required length of unloaded hole is 7 ft., i.e. equal to the burden, the 2 inch diameter explosive would be used. The unloaded length for 2 inch explosive is $22.5-16=6.5 \mathrm{ft}$.

## PRACTICUM X - SOLUTION

Toppling failure analysis

Methods of analysis of toppling failure are descr I bed in Chapter
(a) The factor against sliding is determined by the methods described in Chapter 7; the equation for a dry slope is:

$$
\begin{aligned}
F & =\frac{C \cdot A+W \cos \alpha \cdot \tan \phi}{W \sin \alpha} \\
& =2 . \emptyset
\end{aligned}
$$

$$
\text { where: } \quad \begin{aligned}
A & =\text { base area of block } \\
& =6 \mathrm{ft} . \\
W & =\text { weight of block } / f t . \\
& =150 \times 6 \times 20 \\
& =18,000 \mathrm{lb} / \mathrm{ft} .
\end{aligned}
$$

(b) Fran the dimensions given on Figure $X-I$, the following values are obtained to test stability conditions.
$y / \Delta x=3.3$
$\cos 15=3.7$
The block is just stable because $3.3<3.7$.
(c) If a further 0.4 ft . of erosion of the fault occurs, toppling is I ikely to occur because $Y / \Delta x=20 / 5.6=3.6$.
(d) Stabilization measures which could be used on this slope include:

Filling the tension crack with clay to prevent infiltration of water and bui ld-up of water pressure both in the tension crack and on the fault at the base.

Appl ication of shotcrete to the fault to prevent further erosion.

Blasting to flatten the slope angle and reduce the dimension Y.

Given: A 20 ft. high natural slope with an overhanging face at an ange of 75 degrees exists above a highway. There is a fault, with a dip angle of 15 degrees towards the highway, at the toe of this slope which is weathering and undercutting the face. A tension crack has developed behind the crest of the slope indicating that the face is marginally stable (Figure X-I). The friction angle ( $\phi$ ) of the fault is 20 degrees and the cohesion (C) is 500 psf. The slope is dry.


Figure X. 1: Toppling failure.

Required:
(a) Calculate the factor of safety of the block against sliding if the density of the rock is $150 \mathrm{lb} / \mathrm{cu} . \mathrm{ft}$.
(b) Is the block stable against toppling as defined by the relation:

$$
Y / \Delta x<\cot \alpha-s t a b l e
$$

(c) How much more erosion of the fault must occur before failure occurs?
(d) What stabilization measures would be appropriate for this slope?

This shows that the slope height must be reduced by 22 ft . by unloading the crest to increase the factor of safety from 1.0 to 1.3. Note that this would only be correct if the groundwater level dropped by an equivalent amount.
(d) The critical failure circle and critical tension crack for a slope with groundwater present are located using the graphs in Figure 9.5b.

```
For a slope angle of 60 degrees and a friction angle of 30 de-
grees, the coordinates of the center of the circle are:
x = 0.35.H
 =-24.5 ft., i.e. 24.5 ft. horizontally beyond the toe
Y =H
 =70 ft. i.e. 70 ft. above the toe
```

The location of the tension crack behind the crest is:
$\begin{aligned} b / H & =0.13 \\ b & =9.1 \mathrm{ft}\end{aligned}$
This critical circle is shown in Figure $1 X-2$.


Figure $I X$ - 2 Position of Critical Circle and Critical Tension Crack

PRACTICUM IX - SOLUTION
Circular failure analysis
9. Method of analysis of circular failures is described in Chapter
(a) The groundwater level shown in Figure IX-I corresponds to groundwater condition 3 on page 9.9 in the manual, so chart number 3 on page 9.11 is used in the analysis.

$$
\text { When } \phi=30^{\prime} \text { and } F=1, \tan \phi / F=0.58
$$

The intersection of this value for $\tan \phi / F$ and the curve for slope angle of 60 degrees gives:

$$
\mathrm{C} / \mathrm{Y} / \mathrm{HF}=0.086
$$

$$
\text { Limiting cohesion, } \begin{aligned}
C & =0.086 \times 160 \times 70 \times 1.0 \\
& =\underline{963 \mathrm{psf}}
\end{aligned}
$$

(b) If the slope were completely drained, failure chart 1 would be used for the analysis.

$$
\begin{aligned}
C / \gamma \cdot H \tan \phi & =963 / 160.70 \cdot \tan 30 \\
& =0.15
\end{aligned}
$$

The intersection of this inclined line with the curved I ine for a slope angle of 60 degrees gives:

$$
\begin{aligned}
& \tan \phi / F=0.52 \\
& F=\frac{\tan 30}{0.52} \\
&=1.11
\end{aligned}
$$

This factor of safety is less than that usually accepted for a temporary slope, i.e. $F=1.2$, so draining the slope would not be an effective means of stabilization.

When $F=1.3$ and $\phi=30^{\circ}$, then $\tan \phi / F=0.44$
On chart number 3 the Intersection of this horizontal line with the curved line for a slope angle of 60 degrees gives:
$c /$ THF $=.096$
$H=\frac{963}{160 \times 1.3 \times 0.096}$
$=48 \mathrm{ft}$.

PRACTICUM IX
Circular failure analysis

Given: A 70 ft . high rock cut with a face angle of 60 degrees has been excavated in highly weathered granitic rock. A tension crack has opened behind the crest and it is likel y that the slope is on the point of failure, i.e. the factor of safety is approximately 1.0 . The friction angle of the material is estimated to be 30 degrees, its density is $160 \mathrm{lb} / \mathrm{cu} . f \mathrm{f}_{\mathrm{f}}$, , and the position of the water table is shown on the sketch of the slope (Figure lX-l). The rock contains no continuous joints and the most likely type of failure mode is a circular failure.

## Required:

(a) Do a back-analysis of the failure to determine the limiting value of the cohesion when the factor of safety is 1.0 .
(b) Using the strength parameters calculated in question (a), determine the factor of safety for a completely drained slope. Would drainage of the slope be a feasible method of stabilization.
(c) Using the groundwater level shown in Figure $I X-1$ and the strength parameters calculated in question (a), calculate the reduction in slope height, i.e. amount of unloading of the slope crest required to increase the factor of safety to 1.3.
(d) For the slope geometry and groundwater level shown in Figure IX-I, find the coordinates of the center of the critical circle and the position of the critical tension crack.


Figure IX. 1 : Slope geometry for circular failure.

## PRACTICUM VI I I

Wedge failure analysis

Given: A rock cut has been excavated with a face angle of 55 degrees in rock containing two major joint sets which form a wedge and are oriented as follows:

$$
\begin{aligned}
& \text { Set } A=\operatorname{dip}\left(\mathscr{V}_{A}\right)=50^{\circ} \text {, dip direction }\left(\alpha_{A}\right)=140^{\prime} \\
& \text { Set } B=\operatorname{dip}\left(\mathscr{Y}_{B}\right)=60^{\circ} \text {, dip direction }\left(\alpha_{B}\right)=250^{\prime}
\end{aligned}
$$

The friction angle of set $A$ is 30 degrees and of set $B$ is 45 degrees, and there is no cohesion on either set. Assume that the slope is drained.

Required:
(a) Determine the factor of safety of the wedge using the frictiononly design charts (pages 8-13 to 8-20). Is this a potentially unstable wedge?
(b) Calculate the dip $\left(\psi_{i}\right)$ and dip direction $\left(\mathcal{L}_{j}\right)$ of the line of intersection of the wedge and determine if the slope face undercuts the wedge.
$\operatorname{Tan} \psi_{i}=\operatorname{Tan} \psi_{A} \cdot \cos \left(\alpha_{A}-\alpha_{i}\right)=\tan \psi_{B} \cdot \cos \left(\alpha_{B}-\alpha_{i}\right)$

$$
\begin{equation*}
\operatorname{Tar} \alpha_{i} \cdot \frac{\tan \psi_{A} \cdot \cos \alpha_{A}-\tan \psi_{B} \cdot \cos \alpha_{B}}{\tan \psi_{B} \cdot \sin \alpha_{B}-\tan w_{A} \cdot \sin \alpha_{A}} \tag{ii}
\end{equation*}
$$

This equation gives two solutions 180 degrees apart; the correct value $I$ ies between $\%$ and $\mathcal{C}_{B}$

PRACTICUM VI I I - SOLUTION
Wedge failure analysis

1. Analysis of wedge failures is discussed in Chapter 8 and Appendix
(a) The factor of safety for friction only and a drained slope is:

$$
\begin{equation*}
F=A \tan \phi_{A}+B \tan \phi_{B} \tag{iii}
\end{equation*}
$$

Constants $A$ and $B$ are obtained from the charts on page 8.14 for a dip difference of 10 degrees, and a dip direction difference of 110 degrees.

$$
A=1.0, B=0.57
$$

$$
F=\operatorname{Itan} 35+0.57 \tan 50
$$

$$
=1.38 \text {. }
$$

This is a potentially unstable wedge because water pressure could reduce the factor of safety to below 1.0 .
(b) Solution of equation (ii) gives $\mathcal{L}_{i}=7.6^{\prime}$ or $187.6^{\circ}$. Because $\mathcal{K}_{i}$ must be between $\mathcal{L}_{A}$ and $\mathcal{K}_{B}$, the correct value is 187.6.. Subst $\mathrm{i}+\mathrm{u}-$ tion of this value in equation (i) gives $\mathcal{Y}_{i}=38.8$. If the face is cut at 55 degrees, the slope willundercut the wedge and sliding could occur. The stereoplot on Figure 8.3 i l lustrates the relationship between the slope angle, the dip of the line of interseo tion and the friction angle, i.e. $\psi_{f}-\phi>\psi_{i}=$ stable.

## Slope reinforcement with rock bolts

(a) The factor of safety of planar slope failure reinforced with rock bolts is calculated using equation (65) on page 7.17. In this case where the slope is drained and the cohesion is zero,
$c=u=v=0$
Therefore: $F=\frac{(W \cos \%+T \cos \theta) \tan \phi}{W \sin \%-T \sin \theta}$

Where $W$ is the weight of the sliding block. Using (46) on page 7.5 with

$$
\begin{aligned}
H & =40^{\circ}, 2 \%=35^{\circ}, \%=60^{\circ}, \mathrm{Z} / H=0.38 \\
W & =132,000(0.86 \cot 35-\cot 60) \\
& =85913 \mathrm{lb} / \mathrm{ft} .
\end{aligned}
$$

The factor of safety of the reinforced slope with $T=25,000 \mathrm{lb} / \mathrm{f}_{\mathrm{f}}$ and6 $\mathbf{x} 0$ is:

$$
F=\frac{(85913 . \cos 35+25,000 \cos 0) \tan 37}{85913 . \sin 35-25,000 \sin 0}
$$

$=\frac{71,870}{49,277}$
$=1.46$
(b) If the bolts are installed at a flatter angle so that $\boldsymbol{\theta}=40$, then the factor of safety is:

$$
F=\frac{(85913 \cos 35+25,000 \cos 40) \tan 37}{85913 \sin 35-25,000 \sin 40}
$$

$=67,463$
33,207
$=2.03$

This shows the signiflcant improvement that can be achieved by installing bolts at an ange flatter than the normal to the failure surface. The optimum angle is when:

```
O=90-$ see page 2.10
 =90-37
 = 530}\mathrm{ and factor of safety = 2.21
```

(c) The rock bolt pattern should be laid out so that the distribution of bolts on the slope is as even as possible. If four bolts are installed in each vertical row and each row is 8 ft. apart, then the bolts are on an approximate 8 ft . square pattern and the bolt load per foot of slope is $25,000 \mathrm{lb}$.

## Slope stabilization by unloading

The factor of safety is calculated using the design charts on Figure 7.3. The following values are obtained for the four constants:

```
P=1.74 when }\mp@subsup{\psi}{\rho}{}=35,z/H=0, 洉=6
Q =0.46
R=0
s=0
F=}=\frac{(0.42)+(0.46.\operatorname{cot}35).\operatorname{tan}37}{0.46
 =0.92
 0.46
 =2.0
```

Note that in case (c) the factor of safety for a 40 ft. high drained slope with cohesion $=500$ psf was 1.56 .
$=1.05$ - this indicates that the slope is close to failure.
(c) If the slope was drained so there was no water in the tension crack, i.e. $Z w=0$, then factors $R$ and $S$ become zero while factors $P$ and $Q$ remain unchanged. The new factor of safety is:

$$
F=\frac{(0.17)+(0.35 \cot 35) \tan 37}{\emptyset .35}
$$

$=1.56$ = this is usually an adequate factor of safety
(d) The plot of factor of safety against depth of water in the tension crack (Zw) is nearly linear which shows that a significant decrease in the water level is required to improve the factor of safety. It also shows that the slope must remain drained if it is to be stable with an adequate factor of safety.

(e) If the slope is drained and the cohesion on the failure plane is reduced from 500 psf to zero by blast vi brations, then the new factor of safety is:

$$
\begin{aligned}
F & =\frac{0+(0.35 \cot 35) \tan 37}{0.35} \\
& =1.08
\end{aligned}
$$

Note: Factors $P, Q, R, S$ are the same as in case (c).

> The loss of cohesion reduces the factor of safety from 1.56 to 1.08 which illustrates the sensitivity of the slope to the cohe sion on the failure plane.
> (f) figure 7.60 shows that the critical tension crack depth is 14.7 the tension crack.

Analysis of plane failure is described in Chapter 7.
(a) Factor of safety calculations: the factor of safety is calculated using equation (48) on page 7.5. The constants $P, P, R$ and $S$ in this equation are obtained from the design charts in Figure 7.3. For this practicum the following values were obtained for the constants.

$$
P=1.1 \text { when } \psi_{P}=35^{\circ}, Z / H=0.38
$$

$$
Q=0.35
$$

$$
R=\frac{\gamma_{W}}{\gamma} \cdot \frac{Z_{w}}{Z} \cdot \frac{Z}{H}
$$

$$
=\frac{62.4}{165} \cdot \frac{10}{15} \cdot \frac{15}{40}
$$

$=0.09$
$s=0.16$ when $\%=35^{\circ}, W / H=0.25$
$F=(2 \times 500 / 165 \times 40) 1.1 \mathrm{t}(0.35 \cot 35=0.09(1.1+0.16)) \tan 37$
$0.35+0.09 \times 0.16 \times \cot 35$
$=(0.17)+(0.39) \tan 37$
= 1.24 - This is usually a marginal factor of safety.
(b) If the tension crack is completely filled with water, i.e. $\mathbf{Z w}=$ 15, the parameters $R$ and $S$ wi I l change, but parameters $P$ and $Q$ willbe unchanged. The new values of $R$ and $S$ are as follows:

$$
\begin{aligned}
R & =\frac{62.4}{165} \cdot \frac{15}{15} \cdot \frac{15}{40} \\
& =0.14 . \\
S & =0.22 \text { when } \psi_{p}=35: Z W / H=0.38
\end{aligned}
$$

The new factor of safety is:
$F=\frac{(0.17)+(0.35 \cot 35-0.14(1.1+0.22)) \tan 37}{+0.14 \times 0.22 \times \cot 35}$
$=\frac{(0.17)+(0.32) \tan 37}{0.39}$

$$
0.39
$$

(b) Calculate the new factor of safety if the bolts are installed at a f 1 atter angle so that the angle $\theta$ is increased from 0 to $40^{\circ}$.
(c)

If the working load for each bolt is $50,000 \mathrm{lb} .$, suggest a bolt layout, i.e. the number of bolts per vertical row and the hor izontal and vertical spacing between bolts to achieve a bolt load of $25,000 \mathrm{lb} / \mathrm{ft}$. of slope length.

## Slope Stabilization by Unloading

Calculate the factor of safety for a drained slope with cohesion = 500 psfif the slope height is reduced from 40 ft . to 25 ft . by excavating the crest of the slope to the level of the base of the tension crack.


Figure PI. 1 PIane failure geometry.

PRACTICUM VI I
Plane failure - analysis and stabilization

Given: A 40 ft . high rock slope has been excavated at a face angle of 60 degrees. The rock in which this cut has been made contains continuous fractures that dip at an angle of 35 degrees into the excavation. The 15 ft . deep tension crack is 13 ft . behind the crest and is filled with water at a height of 10 ft . above the failure surface (Figure VII.I). The strength parameters of the fa i ure surface are as follows:

> cohesionc $=500$ psf
> friction angle $\phi=37^{\circ}$

The unit weight of the rock is $165 \mathrm{lb} / \mathrm{cu} . f+$. and the unit weight of water is $62.4 \mathrm{lb} / \mathrm{t}_{\mathrm{t}} \mathrm{3}^{3}$.

Required:
Assuning that a plane slope failure is the most likely type of failure, determine the following:
(a) Calculate the factor of safety of the stope for the conditions given in the sketch. Use design charts on Figure 7.3 in the manual.
(b) Determine the new factor of safety if the tension crack was completely filled with water due to run-off collectingon the crest of the slope.
(c) Determine the new factor of safety if the slope was completely drained.
(d) Plot the relationship between the factor of safety and the depth of water in the tension crack.
(e) Determine the new factor of safety if the cohesion was to be reduced to zero due to excessive vibrations from nearby blasting operations, assunlng that the slope was still completely drained.
(f) Determine whether the 15 ft. deep tension crack is the critical depth. Use the charts on Figure $7.6 a$ in the manual.

## Slope Reinforcements Using Rock Bolts

(a) It is proposed that the drained slope with zero cohesion be reinforced by installing tensional rock bolts anchored into sound rock beneath the failure plane. If then rock bolts are installed at right angles to the failure plane, i.e. $8=0$, and the total load on the anchors per lineal foot of slope is $25,000 \mathrm{lb}$., calculate the factor of safety.

PRACTICUM VI
Calculation of permeability from falling head test results

Given: A Falling Head Permeability Test is carried out in a rock of uniform permeabi lity. The borehole diameter is 3 inches and the inside diameter of the drill rods is 2.36 inches. The drill rods are lifted from the bottom of the hole and a packer is installed (to create a seal to prevent water seepage up the annul us between the outside of the rods and the borehole) such that the test zone is 40 inches long.

The water level in the rods at rest is 164 ft . below the hole collar and water is added raising the water level to 115 ft . below the hole collar. After 30 seconds $\left(t_{l}\right)$ and 150 seconds ( $t_{q}$ ) the water levels in the rods have fallen by 16 ft . and 32 ft . respectively.

Required:

Calculate the coefficient of permeabi lity of the rock assuming that the borehole is vertical and that the tests carried out below the water level.

PRACT ICUM V I - SOLUTION
Calculation of permeability from falling head test results

Methods of interpreting fal 1 ing head tests results are described in Chapter 6.

Coefficient of permeability can be calculated using:

$$
k=\frac{A}{F\left(t_{2}-F_{1}\right)} \cdot \log _{2} \frac{H_{1}}{H_{2}}
$$

The first step in this analysis is to calculate the shape factor, $F$ fran the equation given in 3 rd case (page 6.13 in manual).

$$
\begin{aligned}
F & =\frac{2 \pi L}{\log (2 L / 0)} \\
& =\frac{2 \cdot \pi \cdot 40}{\log _{e}(2 \cdot 40 / 3)} \\
& =76.5
\end{aligned}
$$

The second step is to calculate cross-sectional area of the water column in the rods

$$
\text { from } A=\pi d^{2} / 4
$$

$A=4.4$ inches $^{2}$
The third step is to calculate the water levels HI and H2 at different times $t_{/}$and $t_{2}$.

$$
\begin{aligned}
\text { HI (after } 30 \text { seconds) } & =164-(115+16) \\
& =33+4=396 \text { inches } \\
\text { H2 (after } 150 \text { seconds) } & =164-(115+32) \\
& =17 \mathrm{ft}=204 \text { inches }
\end{aligned}
$$

Substituting in equation 35.

$$
\begin{aligned}
k & =\frac{4.4}{76.5(150-30)} \operatorname{loge} 396 / 204 \\
& =3.2 \times 10^{-4} \mathrm{in} / \mathrm{sec} \\
& =8 \times 10^{-4} \mathrm{~cm} / \mathrm{sec} .
\end{aligned}
$$

## PRACTICUM V - SOLUTION

Influence of geology and weather conditions on groundwater levels
Methods of evaluating groundwater conditions in slopes is described in Chapter 6.

Figures V. $2 \mathrm{a}, \mathrm{b}$, c show the positions of the phreat ic I i ne under the various conditions.

In genera l, the rock near the surface of the slope has been disturbed by blasting and has undergone stress relief so it will have a higher permeability than the undisturbed rock. When the permeability is high, the rock drains readily and the phreatic line has a relatively flat gradient.

If the face freezes and the water cannot drain from the slope then phreatic line will rise behind the face. The same situation arises when heavy infiltration exceeds the rate at which the rock will drain.


Figure V.2a Position of the phreatic line before and after excavation.


Figure V.2b Relative positionsof the phreatic line for variations of inflow and permeab ility.


Figure V.2c Hypothetical positions of the phreatic line in a jointed rock slope.


Figure V.la Position of the phreatic line before and after excavation.


Figure V.lb Relative positions of the phreatic line for variations of inflow and permeability.


Figure V.lc Hypothetical positions of the phreatic line in a jointed rock slope.

PRACTICLM IV
Analysis of point load test results

Given: A series of point load tests on pieces of core 2.4 inches in diameter gave an average point load strength index of 10.2 when the core was loaded diametrically.

Required:
Determine the average uniaxial compressive strength of the samples.

PRACTICLM IV - SOLUTION
Analysis of point load test results

Methods of analysis of point load test results are given in Chapter 5.

The relationship between point load strength index (is) and uniaxial compressive strength $\left(\sigma_{c}\right)$ for 2.4 inch diameter core is:

where $\sigma_{C}$	$=24.5 \times 1 \mathrm{~s}$
$\sigma_{c}$	is in MPa
$\sigma_{C}$	$=24.5 \times 10.2$
	$=250 \mathrm{MPa}$
	$=\underline{56,245 \mathrm{psi}}$

PRACTICUM V
Influence of geology and weather conditions on groundwater levels
(a) On the cross-section shown in Figure Kladraw the approximate position of the phreatic line after excavation of the slope.
(b) On the cross-section shown in Figure klb drow the approximate positlons of the phreatic llne for two conditions:
(1) large inflow, low permeability
(2) small inflow, high permeability
(c) On the cross-section shown in Figure V1c draw the approximate positions of the phreatic line for the following conditions:
(1) joints on slope face plugged with ice
(2) immediately following a heavy rainstorm
(3) wet season
(4) dry season


## AR-14

PRACTICUMIII
Analysis of direct shear strength test results

Given: The following table of results was obtained from a direct shear box test or a planar discontinuity in a sample of weathered granite. The average normal load on the sample was 30 psi .

Shear Stress (psi) $\quad$| Shear Displacement |
| :---: |
| $(0.001$ inches) |

23	2
29	47
35	142
33	177
31	335
30	370
29	457
28	496
26	673
26	780

Required:
(a) Plot a graph of shear stress against shear displacement with shear stress on the vertical axis.
(b) From the graph determine the peak shear strength and peak friction angle of the surface.
(c) From the graph determine the resi dua I shear strength and res i dua I friction angle of the surface.

PRACTICLM III - SOLUTION
Analysis of direct strength shear test results

Methods of evaluating shear strength test results are described in Chapter 5.
(a) The graph of shear stress against shear displacement is shown on Figure $\Pi$ - 1 .
(b) The peak strength is 35 psi from which the peak friction angle is:

$$
\begin{aligned}
\mathscr{O}_{P} & =\tan ^{-1} \frac{(\text { Shear stress })}{(\text { normal stress })} \\
& =\tan ^{-1} \frac{(35)}{(30)} \\
& =49^{\circ}
\end{aligned}
$$

(c) The residual strength is 26 psi and the res i dual friction angle is:

$$
\phi_{r}=\tan ^{-1} \frac{(26)}{(30)}
$$

$=41^{\circ}$


Figure 11.4: Stability conditionson north dipping slopewedge failure onjoint set 1 and joint set 2 .

## A8-12



Figure II. 3: Stability conditions on east dipping slopesliding failure on joint set 2 .

## AB-11




Figure 11.1: Cut slope and geological structures above highway.

PRACT I CUMII
Slope stability evaluation related to structural geology

Given: In order to make a 90 degree curve in the highway a 50 ft . nigh rock cut has been excavated that follows the curve of the highway. The slope is 50 ft . high and the face is cut at an angle of 50 de grees.

The joints in the rock at the site form three sets with the following orientations:

$$
\begin{array}{lr}
\text { Set } 1 & 78 / 305 \\
\text { Set } 2 & 40 / 081 \\
\text { Set } 3 & 20 / 163
\end{array}
$$

Figure I-l shows the alignment of the highway and the orientation of the three sets in the slope.

The friction angle of the joint surfaces is 25 degrees.
Required:
(a) On a piece of tracing paper draw a great circle representing the 50 degree slope face and a 25 degree friction circle.
(b) Determine the most likely mode of failure, i.e. planar, wedge or toppling, on the following slopes:
(1) East dipping slope.
(2) Worth dipping slope.
(c) State the joint set or sets on which sliding would occur on each slope.
(d) Determine the steepest possible slope angle for these two slopes assuming that only the orientation of the fractures and the friction angle of the surfaces have to be considered.

PRACTICUM II - SOLUTION
Slope stability evaluation related to structural geology

Methods of evaluating slope stabil ity are described in Chapter 3.
(a) Figure $\Pi$-2 shows the great circle of the slope at a face angle of 50 degrees. Note that there is no reference direction on this great circle because it will be rotated to follow the curvature of the slope.

A 25 degree friction circle is plotted on the same diagram as the great circle.
(b) The stability evaluation is carried out by placing first the tracing of the great circles (Figure $I-3$ ) and then the tracing of the slope face and friction circle (Figure I-2) on the equal area net. The tracing of the slope great circle is rotated to the corresponding orientation of the slope face to give the following results:

East dipping slope: Sliding failure possible on joint set (Figure I3). Sliding could be prevented by cutting the slope at 40 degrees coincident with the joint surfaces. If the friction angle had been greater than 40 degrees then sliding would not occur on these planes.

North dipping slope: Wedge failure possible on joint sets 1 and 2 (Figure $\square^{-4}$ ). Sliding could be prevented by cutting the slope at an angle of 27 degrees so that the wedges are not undercut by the slope.


[^0]:    *The definition of this and of other terms used in the stability analysis is given later in the manual. A detailed knowledge of the method of analysis is not necessary in order to follow this example.

[^1]:    *Determined by regression analysis of triaxial test data on Intact andeslte core(136).

[^2]:    *In Ladanyl and Archambault's or lginal equations, the term $\eta \sigma_{c}$ appears In equatlons 28, 28 a and $b$. The authors have omltted 7 from equat lons $28 a$ and $b$ because they consl der that $1 t$ applies to the interlocking of the rock mass and not to the dilation rate $\dot{v}$ and the sheared area $a_{s}$ which are functions of the shape and orlentations of the Indlvidual blocks within the rock mass.

[^3]:    174. TAYLOR, D.U. Fundomentals of Soil Mechanics. John Wiley $\delta$ Sons, New York, 1948.
[^4]:    Figure 11.8: Typical pattern and procedure for line drilling (plan view).

[^5]:    - From Geo Space Corporation product specifications.

[^6]:    324. OFFICE OF THE FEDERAL REGISTER, NATIONAL ARCHIVES AND RECORDS SERVICE, GENERAL SERVICES ADMINISTRATION, Code of Federal Regulations 41, Public Contracts and Property Management, Chapters 1 and 2, as of July Ist, 1977 (41CFR I-I Federal Procurement Regulation).
    325. PEURITOY, R.L. Construction Planning, Equipment and Methods, 2nd Ed. McGraw-Hill Book Company, New York, 1970.
    326. CRIMMINS, R., SAMUELS, R., AND MONAHAN, B.P. Construction Rock Work Guide, Wiley-Interscience, New York, 1972.
    327. BERMAN, T. AND CROSSLAND, S.H. Selecting the Appropriate Construction Contract, Chapter i4of Construction Business Handbook, McGraw-Hill Book Co., New York, 1972.
    328. GOODMAN, R. Methods of Geological Engineering, West PubI ishing Company, St. Paul, 1976.
